We prove that it is possible for nonconvex low-rank matrix recovery to contain no spurious local minima when the rank of the unknown ground truth $r^{\star}<r$ is strictly less than the search rank $r$, and yet for the claim to be false when $r^{\star}=r$. Under the restricted isometry property (RIP), we prove, for the general overparameterized regime with $r^{\star}\le r$, that an RIP constant of $\delta<1/(1+\sqrt{r^{\star}/r})$ is sufficient for the inexistence of spurious local minima, and that $\delta<1/(1+1/\sqrt{r-r^{\star}+1})$ is necessary due to existence of counterexamples. Without an explicit control over $r^{\star}\le r$, an RIP constant of $\delta<1/2$ is both necessary and sufficient for the exact recovery of a rank-$r$ ground truth. But if the ground truth is known a priori to have $r^{\star}=1$, then the sharp RIP threshold for exact recovery is improved to $\delta<1/(1+1/\sqrt{r})$.
翻译:我们证明,如果未知地面真相的等级远远低于搜索等级的美元,那么非Convex低端矩阵回收就有可能不包含虚假的当地迷你资产。 在限制的偏差属性(RIP)下,我们证明,对于以$star ⁇ r ⁇ r ⁇ r}r$作为总超分数制度,如果用$delta <1/(1 ⁇ sqrt{r ⁇ star}/r}美元作为RIP常数,美元为美元=1/r>/r},那么,当未知的当地迷你资产存在时,美元=1/(1+1/\sqr{r\r ⁇ ztar}},而由于存在反印章,美元的要求是虚假的。如果对${starztar{r ⁇ r}r=1}rIP常数没有明确的控制,那么,美元=delta < 1/2$的RIP常数既有必要,也足以准确恢复一个等级-1/r$的地面真相。但是,如果已知的真相是美元/rsta_r\\\\\\\\\\\\\\\\\\\\\\\\\\}那么,那么,由于精确的起点回收阈的门槛的阈阈阈值是改进的阈值。