Dark web marketplaces (DWMs) are online platforms that facilitate illicit trade among millions of users generating billions of dollars in annual revenue. Recently, two interview-based studies have suggested that DWMs may also promote the emergence of direct user-to-user (U2U) trading relationships. Here, we quantify the scale of, and thoroughly investigate, U2U trading around DWMs by analysing 31 million Bitcoin transactions among users of 40 DWMs between June 2011 and Jan 2021. We find that half of the DWM users trade through U2U pairs generating a total trading volume greater than DWMs themselves. We then show that hundreds of thousands of DWM users form stable trading pairs that are persistent over time. Users in stable pairs are typically the ones with the largest trading volume on DWMs. Then, we show that new U2U pairs often form while both users are active on the same DWM, suggesting the marketplace may serve as a catalyst for new direct trading relationships. Finally, we reveal that stable U2U pairs tend to survive DWM closures and that they were not affected by COVID-19, indicating that their trading activity is resilient to external shocks. Our work unveils sophisticated patterns of trade emerging in the dark web and highlights the importance of investigating user behaviour beyond the immediate buyer-seller network on a single marketplace.


翻译:黑暗网络市场(DWMS)是在线平台,为数百万年收入达数十亿美元的用户的非法贸易提供便利。最近,两项访谈研究表明,DWMS还可能促进直接用户对用户(U2U)交易关系的出现。在这里,我们量化并彻底调查2011年6月至2021年1月期间40个DWMS用户之间U2U交易的规模。我们发现,DWM用户中有一半通过U2U对交易进行交易,其交易总量超过DWMS本身。我们随后表明,数十万DWM用户形成稳定的贸易对子,这种对子持续时间较长。固定对子的用户通常是DWMS交易量最大的用户。然后,我们表明,新的U2U对子交易量通常形成3 100万比特币交易量交易量,而这两个用户都活跃在同一DWMS交易中。我们发现,市场可以成为新的直接贸易关系的催化剂。最后,我们发现,稳定的U2U对子往往在DWM公司关闭之后形成稳定的贸易量,而且他们并没有受到CVID-19交易中不断升级的不断升级的市场。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
3+阅读 · 2021年11月1日
Arxiv
13+阅读 · 2021年6月14日
A Comprehensive Survey on Graph Neural Networks
Arxiv
21+阅读 · 2019年1月3日
Arxiv
8+阅读 · 2018年1月30日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
LibRec 精选:CCF TPCI 的推荐系统专刊征稿
LibRec智能推荐
4+阅读 · 2019年1月12日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
计算机类 | SIGMETRICS 2019等国际会议信息7条
Call4Papers
9+阅读 · 2018年10月23日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员