We prove that the slice rank of a 3-tensor (a combinatorial notion introduced by Tao in the context of the cap-set problem), the analytic rank (a Fourier-theoretic notion introduced by Gowers and Wolf), and the geometric rank (an algebro-geometric notion introduced by Kopparty, Moshkovitz, and Zuiddam) are all equal up to an absolute constant. As a corollary, we obtain strong trade-offs on the arithmetic complexity of a biased bilinear map, and on the separation between computing a bilinear map exactly and on average. Our result settles open questions of Haramaty and Shpilka [STOC 2010], and of Lovett [Discrete Anal. 2019] for 3-tensors.
翻译:我们证明一个三十分分位的切片级(由陶在设定上限的问题中引入的组合概念 ) 、 分析级(由高尔斯和沃尔夫引入的四极理论概念 ) 、 几何级(由科普党、莫什科维茨和苏达姆引入的代数-几何级概念 ) 等同绝对常数。 作为必然结果,我们对偏差双线地图的计算复杂性,以及精确和平均计算双线地图的分离,取得了强烈的权衡。 我们的结果解决了哈拉马提和Shpilka[2010年STOC]以及3-秒的洛夫特[Discrete Anal. 2019]这两个问题。