We study the problem of maximizing a monotone submodular function subject to a Multiple Knapsack constraint. The input is a set $I$ of items, each has a non-negative weight, and a set of bins of arbitrary capacities. Also, we are given a submodular, monotone and non-negative function $f$ over subsets of the items. The objective is to find a packing of a subset of items $A \subseteq I$ in the bins such that $f(A)$ is maximized. Our main result is an almost optimal polynomial time $(1-e^{-1}-\varepsilon)$-approximation algorithm for the problem, for any $\varepsilon>0$. The algorithm relies on a structuring technique which converts a general multiple knapsack constraint to a constraint in which the bins are partitioned into groups of exponentially increasing cardinalities, each consisting of bins of uniform capacity. We derive the result by combining structuring with a refined analysis of techniques for submodular optimization subject to knapsack constraints.


翻译:我们研究在多Knapsack 限制下最大限度地增加单调子模块函数的问题。 输入是一套固定的物品美元, 每个物品都有非负性重量, 以及一组任意能力的垃圾箱。 此外, 我们得到一个子模块、 单调和非负性功能$ff美元, 相对于这些物品的子集。 目标是在垃圾箱中找到一个子项的包装 $A\ subseqe I$, 以便最大化成 $f( A) 。 我们的主要结果是, 对于任何 $\ varepsilon>0 来说, 每一个物品都有一个几乎最优化的多价时间 $( 1- e ⁇ -1 }-\ varepsilon) 和 $- accession 。 该算法依赖于一种结构化技术, 它将一个普通的多Knapsack 约束转换成一个制约, 将垃圾桶分成成指数增长基质的组合, 每一个由统一能力箱组成。 我们通过将结构与对亚模块限制进行精细分析得出结果。

0
下载
关闭预览

相关内容

Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
109+阅读 · 2020年5月15日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Arxiv
0+阅读 · 2021年6月7日
VIP会员
相关VIP内容
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
carla 学习笔记
CreateAMind
9+阅读 · 2018年2月7日
carla无人驾驶模拟中文项目 carla_simulator_Chinese
CreateAMind
3+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员