Tor, an onion-routing anonymity network, has been shown to be vulnerable to Website Fingerprinting (WF), which de-anonymizes web browsing by analyzing the unique characteristics of the encrypted network traffic. Although many defenses have been proposed, few have been implemented and tested in the real world; others were only simulated. Due to its synthetic nature, simulation may fail to capture the real performance of these defenses. To figure out how these defenses perform in the real world, we propose WFDefProxy, a general platform for WF defense implementation on Tor using pluggable transports. We create the first full implementation of three WF defenses: FRONT, Tamaraw and Random-WT. We evaluate each defense in both simulation and implementation to compare their results, and we find that simulation correctly captures the strength of each defense against attacks. In addition, we confirm that Random-WT is not effective in both simulation and implementation, reducing the strongest attacker's accuracy by only 7%. We also found a minor difference in overhead between simulation and implementation. We analyze how this may be due to assumptions made in simulation regarding packet delays and queuing, or the soft stop condition we implemented in WFDefProxy to detect the end of a page load. The implementation of FRONT cost about 23% more data overhead than simulation, while the implementation of Tamaraw cost about 28% - 45% less data overhead. In addition, the implementation of Tamaraw incurred only 21% time overhead, compared to 51% - 242% estimated by simulation in previous work.


翻译:托尔(一个洋葱路途匿名网络)被证明很容易被网站指纹(WF)模拟(WF)使用,它通过分析加密网络流量的独特性能而使网络不匿名浏览。虽然提出了许多防御建议,但在现实世界中实施和测试的却很少;其他只是模拟。由于其合成性质,模拟可能无法捕捉这些防御的真实性能。要弄清这些防御在现实世界中如何运作,我们提议WFDEFProxy,这是WFDEF Proxy,一个使用可插入的运输工具执行托尔(TORMT)、Tamalaw和Randoman-WT)的通用防御总平台。我们首次全面实施三个WFD的防御:FRAT、Tamalaw和Random-WT。我们评估了在模拟和实施过程中的每一项防御,以比较其结果,我们发现模拟正确地捕捉到每次防御攻击的强度。此外,随机的节奏在模拟和实施过程中并不有效,仅将最强的进攻者的精确度降低7%。我们发现模拟与执行之间的间接差。我们发现在模拟与执行中也发现了一个小的差点。我们分析这如何导致软成本的45 %在模拟运行中测测算中测算中,我们测算中测算了成本。

0
下载
关闭预览

相关内容

专知会员服务
27+阅读 · 2021年7月11日
专知会员服务
44+阅读 · 2020年10月31日
专知会员服务
39+阅读 · 2020年9月6日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
11+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2022年1月26日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年8月13日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员