A connected and automated vehicle safety metric determines the performance of a subject vehicle (SV) by analyzing the data involving the interactions among the SV and other dynamic road users and environmental features. When the data set contains only a finite set of samples collected from the naturalistic mixed-traffic driving environment, a metric is expected to generalize the safety assessment outcome from the observed finite samples to the unobserved cases by specifying in what domain the SV is expected to be safe and how safe the SV is, statistically, in that domain. However, to the best of our knowledge, none of the existing safety metrics are able to justify the above properties with an operational domain specific, guaranteed complete, and provably unbiased safety evaluation outcome. In this paper, we propose a novel safety metric that involves the $\alpha$-shape and the $\epsilon$-almost robustly forward invariant set to characterize the SV's almost safe operable domain and the probability for the SV to remain inside the safe domain indefinitely, respectively. The empirical performance of the proposed method is demonstrated in several different operational design domains through a series of cases covering a variety of fidelity levels (real-world and simulators), driving environments (highway, urban, and intersections), road users (car, truck, and pedestrian), and SV driving behaviors (human driver and self driving algorithms).
翻译:通过分析涉及SV和其他动态道路使用者之间互动的数据和环境特征,一个连接和自动化车辆安全指标通过分析一个主题车辆(SV)的性能确定一个主题车辆(SV)的性能。当数据集仅包含从自然混合交通驱动环境中采集的有限样本时,一个指标预计将将观察到的有限样本的安全评估结果推广到未观测案例,具体指明SV在什么领域是安全的以及SV在统计上是安全的,而根据我们所知,任何现有安全指标都无法用一个具体操作领域、保证完整和可想象的公正安全评估结果来证明上述属性的合理性。 在本文中,我们提出了一个新的安全指标,涉及美元-shape和$-epsilon-alon-alverable-process, 用来描述SV的几乎安全可操作域以及SV可能无限期地留在安全域内的可能性,但根据我们所知,拟议方法的经验性能在几个不同的业务设计领域展示了具体操作领域,具体、有保证完整和可理解性的安全性的安全性的安全性评估结果。我们建议采用的方法,通过一系列案例(真实性和机动性、行车载力和行车载力和行车载力水平(高度、行进和行进率、行进率、行进率、行和车和行进率、高度),在一系列高、行车载和行车道和行进环境、行进率等)。