Image quality assessment (IQA) in medical imaging can be used to ensure that downstream clinical tasks can be reliably performed. Quantifying the impact of an image on the specific target tasks, also named as task amenability, is needed. A task-specific IQA has recently been proposed to learn an image-amenability-predicting controller simultaneously with a target task predictor. This allows for the trained IQA controller to measure the impact an image has on the target task performance, when this task is performed using the predictor, e.g. segmentation and classification neural networks in modern clinical applications. In this work, we propose an extension to this task-specific IQA approach, by adding a task-agnostic IQA based on auto-encoding as the target task. Analysing the intersection between low-quality images, deemed by both the task-specific and task-agnostic IQA, may help to differentiate the underpinning factors that caused the poor target task performance. For example, common imaging artefacts may not adversely affect the target task, which would lead to a low task-agnostic quality and a high task-specific quality, whilst individual cases considered clinically challenging, which can not be improved by better imaging equipment or protocols, is likely to result in a high task-agnostic quality but a low task-specific quality. We first describe a flexible reward shaping strategy which allows for the adjustment of weighting between task-agnostic and task-specific quality scoring. Furthermore, we evaluate the proposed algorithm using a clinically challenging target task of prostate tumour segmentation on multiparametric magnetic resonance (mpMR) images, from 850 patients. The proposed reward shaping strategy, with appropriately weighted task-specific and task-agnostic qualities, successfully identified samples that need re-acquisition due to defected imaging process.
翻译:医疗成像中的图像质量评估( IQA) 可用于确保下游临床任务能够可靠地完成。 需要量化某图像对特定目标任务任务的影响, 同时也被称为任务容度。 最近提议了一个任务性IQA, 与目标任务预测器同时学习一个图像可感知控制器。 这使得经过培训的 IQA 控制器能够测量一个图像对目标任务性能的影响, 当任务使用预测器执行时, 比如, 多级临床应用中的多级诊断和神经网络分类。 在这项工作中, 我们提议扩展这一特定任务性目标性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性 。 分析性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性、 质量质量和任务性任务性使命性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性 分析 分析 分析 分析性 分析分析分析性任务性任务性、任务性任务性、任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性任务性 分析 分析性 、性 、性 、性 性