Computational modeling of charged species transport has enabled the analysis, design, and optimization of a diverse array of electrochemical and electrokinetic devices. These systems are represented by the Poisson-Nernst-Planck (PNP) equations coupled with the Navier-Stokes (NS) equation. Direct numerical simulation (DNS) to accurately capture the spatio-temporal variation of ion concentration and current flux remains challenging due to the (a) small critical dimension of the diffuse charge layer (DCL), (b) stiff coupling due to fast charge relaxation times, large advective effects, and steep gradients close to boundaries, and (c) complex geometries exhibited by electrochemical devices. In the current study, we address these challenges by presenting a direct numerical simulation framework that incorporates (a) a variational multiscale (VMS) treatment, (b) a block-iterative strategy in conjunction with semi-implicit (for NS) and implicit (for PNP) time integrators, and (c) octree based adaptive mesh refinement. The VMS formulation provides numerical stabilization critical for capturing the electro-convective flows often observed in engineered devices. The block-iterative strategy decouples the difficulty of non-linear coupling between the NS and PNP equations and allows the use of tailored numerical schemes separately for NS and PNP equations. The carefully designed second-order, hybrid implicit methods circumvent the harsh timestep requirements of explicit time steppers, thus enabling simulations over longer time horizons. Finally, the octree-based meshing allows efficient and targeted spatial resolution of the DCL. These features are incorporated into a massively parallel computational framework, enabling the simulation of realistic engineering electrochemical devices. The numerical framework is illustrated using several challenging canonical examples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
46+阅读 · 2023年4月16日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
144+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
VIP会员
相关VIP内容
 DiffRec: 扩散推荐模型(SIGIR'23)
专知会员服务
46+阅读 · 2023年4月16日
【ACL2020】多模态信息抽取,365页ppt
专知会员服务
144+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【ICML2020】图神经网络谱聚类
专知
10+阅读 · 2020年7月7日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
灾难性遗忘问题新视角:迁移-干扰平衡
CreateAMind
17+阅读 · 2019年7月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
基于LDA的主题模型实践(三)
机器学习深度学习实战原创交流
23+阅读 · 2015年10月12日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员