Computational modeling of charged species transport has enabled the analysis, design, and optimization of a diverse array of electrochemical and electrokinetic devices. These systems are represented by the Poisson-Nernst-Planck (PNP) equations coupled with the Navier-Stokes (NS) equation. Direct numerical simulation (DNS) to accurately capture the spatio-temporal variation of ion concentration and current flux remains challenging due to the (a) small critical dimension of the diffuse charge layer (DCL), (b) stiff coupling due to fast charge relaxation times, large advective effects, and steep gradients close to boundaries, and (c) complex geometries exhibited by electrochemical devices. In the current study, we address these challenges by presenting a direct numerical simulation framework that incorporates (a) a variational multiscale (VMS) treatment, (b) a block-iterative strategy in conjunction with semi-implicit (for NS) and implicit (for PNP) time integrators, and (c) octree based adaptive mesh refinement. The VMS formulation provides numerical stabilization critical for capturing the electro-convective flows often observed in engineered devices. The block-iterative strategy decouples the difficulty of non-linear coupling between the NS and PNP equations and allows the use of tailored numerical schemes separately for NS and PNP equations. The carefully designed second-order, hybrid implicit methods circumvent the harsh timestep requirements of explicit time steppers, thus enabling simulations over longer time horizons. Finally, the octree-based meshing allows efficient and targeted spatial resolution of the DCL. These features are incorporated into a massively parallel computational framework, enabling the simulation of realistic engineering electrochemical devices. The numerical framework is illustrated using several challenging canonical examples.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年2月15日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员