Machine learning (ML) has penetrated various fields in the era of big data. The advantage of collaborative machine learning (CML) over most conventional ML lies in the joint effort of decentralized nodes or agents that results in better model performance and generalization. As the training of ML models requires a massive amount of good quality data, it is necessary to eliminate concerns about data privacy and ensure high-quality data. To solve this problem, we cast our eyes on the integration of CML and smart contracts. Based on blockchain, smart contracts enable automatic execution of data preserving and validation, as well as the continuity of CML model training. In our simulation experiments, we define incentive mechanisms on the smart contract, investigate the important factors such as the number of features in the dataset (num_words), the size of the training data, the cost for the data holders to submit data, etc., and conclude how these factors impact the performance metrics of the model: the accuracy of the trained model, the gap between the accuracies of the model before and after simulation, and the time to use up the balance of bad agent. For instance, the increase of the value of num_words leads to higher model accuracy and eliminates the negative influence of malicious agents in a shorter time from our observation of the experiment results. Statistical analyses show that with the help of smart contracts, the influence of invalid data is efficiently diminished and model robustness is maintained. We also discuss the gap in existing research and put forward possible future directions for further works.


翻译:合作机器学习(CML)的优势在于分散式节点或代理人的共同努力,这些节点或代理人的共同努力导致更好的示范性业绩和一般化。由于培训ML模型需要大量高质量的数据,因此有必要消除对数据隐私的关切,确保高质量的数据。为了解决这一问题,我们关注CML和智能合同的整合。基于链锁,智能合同使得数据保存和验证以及CML模型培训的连续性能够自动执行。在我们模拟实验中,我们界定智能合同的激励机制,调查诸如数据集特征数量(Num_words)、培训数据的规模、数据持有者提交数据的成本等重要因素。为了解决这一问题,我们关注CML和智能合同的整合问题。我们关注CML合同的整合。基于链、智能合同使得数据保存和验证的自动执行以及CML模型培训的连续性。我们界定智能合同的激励机制,调查诸如数据集(Num_words)的特性数量、培训数据持有者提交数据的成本等等等重要因素,并总结这些因素如何影响模型的准确性:模型在模拟之前和模拟后,进一步缩小模型之间的差距,以及利用高级代理人的平衡的时间。举例,我们更精确的观察结果的准确性分析的准确性分析的准确性分析的准确性分析也显示了我们现有价值。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月21日
Arxiv
45+阅读 · 2019年12月20日
VIP会员
相关VIP内容
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium7
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员