Smets proposes the Pignistic Probability Transformation (PPT) as the decision layer in the Transferable Belief Model (TBM), which argues when there is no more information, we have to make a decision using a Probability Mass Function (PMF). In this paper, the Belief Evolution Network (BEN) and the full causality function are proposed by introducing causality in Hierarchical Hypothesis Space (HHS). Based on BEN, we interpret the PPT from an information fusion view and propose a new Probability Transformation (PT) method called Full Causality Probability Transformation (FCPT), which has better performance under Bi-Criteria evaluation. Besides, we heuristically propose a new probability fusion method based on FCPT. Compared with Dempster Rule of Combination (DRC), the proposed method has more reasonable result when fusing same evidence.
翻译:Smets提出光学概率转换(PPT)作为可转移信仰模式(TBM)中的决定层,认为当没有更多信息时,我们必须使用概率质量函数(PMF)作出决定。 在本文中,信仰进化网络(BEN)和完全因果关系功能是通过在等级理论空间(HHHS)中引入因果关系而提出的。 根据BEN,我们从信息聚合角度解释PPT,并提出一种称为“全孔径概率转换(PT)”的新的概率转换(FCPT)方法,该方法在双轨评估中具有更好的性能。此外,我们大力提出了基于FCPT的新的概率融合方法。与Dempster合并规则(DRC)相比,在使用相同证据时,拟议方法具有更合理的结果。