This paper presents a new approach to design verified compositions of Neural Network (NN) controllers for autonomous systems with tasks captured by Linear Temporal Logic (LTL) formulas. Particularly, the LTL formula requires the system to reach and avoid certain regions in a temporal/logical order. We assume that the system is equipped with a finite set of trained NN controllers. Each controller has been trained so that it can drive the system towards a specific region of interest while avoiding others. Our goal is to check if there exists a temporal composition of the trained NN controllers - and if so, to compute it - that will yield composite system behaviors that satisfy a user-specified LTL task for any initial system state belonging to a given set. To address this problem, we propose a new approach that relies on a novel integration of automata theory and recently proposed reachability analysis tools for NN-controlled systems. We note that the proposed method can be applied to other controllers, not necessarily modeled by NNs, by appropriate selection of the reachability analysis tool. We focus on NN controllers due to their lack of robustness. The proposed method is demonstrated on navigation tasks for aerial vehicles.


翻译:本文介绍了设计由线性时热逻辑(LTL)公式所制成的自主系统神经网络控制器(NNN)控制器(NN)经核实的构成的新设计方法。 特别是, LTL公式要求系统以时间/ 逻辑顺序接触和避免某些区域。 我们假设系统配备了一套有限的经过培训的NNN控制器。 每个控制器都经过培训,能够将系统推向特定感兴趣的区域,同时避免其他区域。 我们的目标是检查受过训练的NNNC控制器(如果有的话,进行计算)的临时构成是否会产生综合系统行为,从而满足属于给定集的任何初始系统状态的用户指定的LTLT任务。 为了解决这一问题,我们提出了一种新的方法,依靠将自动数据理论和最近提议的NNN控制系统可达性分析工具进行新的整合。 我们注意到,拟议的方法可以通过适当选择可达性分析工具,适用于其他控制器,不一定由NNP进行模拟。 我们侧重于NNC控制器,因为其缺乏稳健性。

0
下载
关闭预览

相关内容

专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月20日
Arxiv
11+阅读 · 2020年12月2日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员