This paper presents a new approach to design verified compositions of Neural Network (NN) controllers for autonomous systems with tasks captured by Linear Temporal Logic (LTL) formulas. Particularly, the LTL formula requires the system to reach and avoid certain regions in a temporal/logical order. We assume that the system is equipped with a finite set of trained NN controllers. Each controller has been trained so that it can drive the system towards a specific region of interest while avoiding others. Our goal is to check if there exists a temporal composition of the trained NN controllers - and if so, to compute it - that will yield composite system behaviors that satisfy a user-specified LTL task for any initial system state belonging to a given set. To address this problem, we propose a new approach that relies on a novel integration of automata theory and recently proposed reachability analysis tools for NN-controlled systems. We note that the proposed method can be applied to other controllers, not necessarily modeled by NNs, by appropriate selection of the reachability analysis tool. We focus on NN controllers due to their lack of robustness. The proposed method is demonstrated on navigation tasks for aerial vehicles.
翻译:本文介绍了设计由线性时热逻辑(LTL)公式所制成的自主系统神经网络控制器(NNN)控制器(NN)经核实的构成的新设计方法。 特别是, LTL公式要求系统以时间/ 逻辑顺序接触和避免某些区域。 我们假设系统配备了一套有限的经过培训的NNN控制器。 每个控制器都经过培训,能够将系统推向特定感兴趣的区域,同时避免其他区域。 我们的目标是检查受过训练的NNNC控制器(如果有的话,进行计算)的临时构成是否会产生综合系统行为,从而满足属于给定集的任何初始系统状态的用户指定的LTLT任务。 为了解决这一问题,我们提出了一种新的方法,依靠将自动数据理论和最近提议的NNN控制系统可达性分析工具进行新的整合。 我们注意到,拟议的方法可以通过适当选择可达性分析工具,适用于其他控制器,不一定由NNP进行模拟。 我们侧重于NNC控制器,因为其缺乏稳健性。