Plausible identification of conditional average treatment effects (CATEs) may rely on controlling for a large number of variables to account for confounding factors. In these high-dimensional settings, estimation of the CATE requires estimating first-stage models whose consistency relies on correctly specifying their parametric forms. While doubly-robust estimators of the CATE exist, inference procedures based on the second stage CATE estimator are not doubly-robust. Using the popular augmented inverse propensity weighting signal, we propose an estimator for the CATE whose resulting Wald-type confidence intervals are doubly-robust. We assume a logistic model for the propensity score and a linear model for the outcome regression, and estimate the parameters of these models using an $\ell_1$ (Lasso) penalty to address the high dimensional covariates. Our proposed estimator remains consistent at the nonparametric rate and our proposed pointwise and uniform confidence intervals remain asymptotically valid even if one of the logistic propensity score or linear outcome regression models are misspecified. These results are obtained under similar conditions to existing analyses in the high-dimensional and nonparametric literatures.


翻译:有条件平均治疗效果(CATEs)的显著识别可能依赖于对大量变量的控制,以说明各种混杂因素。在这些高维环境中,对CATE的估计要求对第一阶段模型进行估算,这些模型的一致性取决于正确指定其参数表。虽然CATE存在双紫粗线估计器,但基于CATE第二阶段估算器的推论程序不是双重-紫色。使用大众增强反向偏差加权信号,我们为CATE提出一个估计器,其产生的沃尔德类型信任间隔为二极色。我们假定一个趋势分的后勤模型和结果回归的线性模型,并用1美元(Lasso)的罚款估计这些模型的参数,以解决高维共变。我们提议的估算器在非对称率方面仍然是一致的,我们提议的点性和统一信任度间隔仍然保持着一种假设,即使一个后勤偏差分或线性结果回归模型是二极分不正比。我们假设的,这些结果是在现有的高水平条件下获得的。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月9日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员