Plausible identification of conditional average treatment effects (CATEs) may rely on controlling for a large number of variables to account for confounding factors. In these high-dimensional settings, estimation of the CATE requires estimating first-stage models whose consistency relies on correctly specifying their parametric forms. While doubly-robust estimators of the CATE exist, inference procedures based on the second stage CATE estimator are not doubly-robust. Using the popular augmented inverse propensity weighting signal, we propose an estimator for the CATE whose resulting Wald-type confidence intervals are doubly-robust. We assume a logistic model for the propensity score and a linear model for the outcome regression, and estimate the parameters of these models using an $\ell_1$ (Lasso) penalty to address the high dimensional covariates. Our proposed estimator remains consistent at the nonparametric rate and our proposed pointwise and uniform confidence intervals remain asymptotically valid even if one of the logistic propensity score or linear outcome regression models are misspecified. These results are obtained under similar conditions to existing analyses in the high-dimensional and nonparametric literatures.
翻译:有条件平均治疗效果(CATEs)的显著识别可能依赖于对大量变量的控制,以说明各种混杂因素。在这些高维环境中,对CATE的估计要求对第一阶段模型进行估算,这些模型的一致性取决于正确指定其参数表。虽然CATE存在双紫粗线估计器,但基于CATE第二阶段估算器的推论程序不是双重-紫色。使用大众增强反向偏差加权信号,我们为CATE提出一个估计器,其产生的沃尔德类型信任间隔为二极色。我们假定一个趋势分的后勤模型和结果回归的线性模型,并用1美元(Lasso)的罚款估计这些模型的参数,以解决高维共变。我们提议的估算器在非对称率方面仍然是一致的,我们提议的点性和统一信任度间隔仍然保持着一种假设,即使一个后勤偏差分或线性结果回归模型是二极分不正比。我们假设的,这些结果是在现有的高水平条件下获得的。