In a temporal graph, each edge is available at specific points in time. Such an availability point is often represented by a ''temporal edge'' that can be traversed from its tail only at a specific departure time, for arriving in its head after a specific travel time. In such a graph, the connectivity from one node to another is naturally captured by the existence of a temporal path where temporal edges can be traversed one after the other. When imposing constraints on how much time it is possible to wait at a node in-between two temporal edges, it then becomes interesting to consider temporal walks where it is allowed to visit several times the same node, possibly at different times. We study the complexity of computing minimum-cost temporal walks from a single source under waiting-time constraints in a temporal graph, and ask under which conditions this problem can be solved in linear time. Our main result is a linear time algorithm when temporal edges are provided in input by non-decreasing departure time and also by non-decreasing arrival time. We use an algebraic framework for manipulating abstract costs, enabling the optimization of a large variety of criteria or even combinations of these. It allows to improve previous results for several criteria such as number of edges or overall waiting time. This result is somehow optimal: a logarithmic factor in the time complexity appears to be necessary if the input contains only one ordering of the temporal edges (either by arrival times or departure times).


翻译:在时间图中, 每一个边缘都可以在特定的时间点中找到。 这种可用点通常由“ 时空边缘 ” 来代表, 只有在特定旅行时间后到达时, 才能在特定离开时间从尾部穿过尾巴, 才能在特定旅行时间到达头部。 在这样一个图中, 一个节点与另一个节点的连接自然地通过存在一个时间路径来捕捉。 当时间边缘可以在两个时间边缘之间的节点中等待多少时间时, 当对在两个时间边缘之间的节点施加限制时, 考虑允许它访问相同节点数倍的时间行走时( 可能在不同的时间点) 。 我们用时间图来研究在等待时间限制下从单一来源计算最低成本时间行走的复杂程度, 并询问这一问题在什么条件下可以在线时间得到解决。 我们的主要结果是当时间边缘在输入输入时被非递减离开时间和不递减到达时间时, 就会变得很有趣。 我们使用一个代数框架来调抽象成本, 可能是在不同的节点里离开时间,, 使一个单一来源 最短时间标准或最短的周期的结果 。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年1月22日
Arxiv
0+阅读 · 2023年1月20日
VIP会员
相关VIP内容
专知会员服务
25+阅读 · 2021年4月2日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员