Three-dimensional effect of tunnel face and gravitational excavation generally occur in shallow tunnelling, which are nevertheless not adequately considered in present complex variable solutions. In this paper, a new time-dependent complex variable solution on quasi three-dimensional shallow tunnelling in gravitational geomaterial is derived, and the far-field displacement singularity is eliminated by fixed far-field ground surface in the whole excavation time span. With an equivalent coefficient of three-dimensional effect, the quasi three-dimensional shallow tunnelling is transformed into a plane strain problem with time-dependent virtual traction along tunnel periphery. The mixed boundaries of fixed far-field ground surface and nearby free segment form a homogenerous Riemann-Hilbert problem with extra constraints of the virtual traction along tunnel periphery, which is simultaneously solved using an iterative linear system with good numerical stability. The mixed boundary conditions along the ground surface in the whole excavation time span are well satisified in a numerical case, which is further examined by comparing with corresponding finite element solution. The results are in good agreements, and the proposed solution illustrates high efficiency. More discussions are made on excavation rate, viscosity, and solution convergence. A latent paradox is disclosed for objectivity.
翻译:暂无翻译