Precision tooth segmentation is crucial in the oral sector because it provides location information for orthodontic therapy, clinical diagnosis, and surgical treatments. In this paper, we investigate residual, recurrent, and attention networks to segment teeth from panoramic dental images. Based on our findings, we suggest three single-stage models: Single Recurrent R2U-Net (S-R2U-Net), Single Recurrent Filter Double R2U-Net (S-R2F2U-Net), and Single Recurrent Attention Enabled Filter Double (S-R2F2-Attn-U-Net). Particularly, S-R2F2U-Net outperforms state-of-the-art models in terms of accuracy and dice score. A hybrid loss function combining the cross-entropy loss and dice loss is used to train the model. In addition, it reduces around 45% of model parameters compared to the R2U-Net model. Models are trained and evaluated on a benchmark dataset containing 1500 dental panoramic X-ray images. S-R2F2U-Net achieves 97.31% of accuracy and 93.26% of dice score, showing superiority over the state-of-the-art methods. Codes are available at https://github.com/mrinal054/teethSeg_sr2f2u-net.git.
翻译:在口服部门,精密牙分解至关重要,因为它为矫形疗法、临床诊断和外科治疗提供了位置信息。在本文中,我们调查从全牙科图像中分离牙齿的残余、经常性和关注网络。根据我们的调查结果,我们建议采用三个单一阶段模型:单一经常性R2U-Net(S-R2U-Net)、单一经常性过滤器双R2U-Net(S-R2F2-F2U-Net)(S-R2F2-Attn-U-Net)和单一经常性关注启用过滤器双倍(S-R2F2-Atn-Net)。特别是,S-R2F2U-Net在准确性和dice分数方面优于最先进的模型。在培训模型时使用了一种混合损失功能,将跨周期性损失和狄冰损失结合起来。此外,它比R2U-Net模型减少了大约45%的模型参数。在包含1500个牙科X射线图像的基准数据集(S-R2F2U-Net)上,S-Net在精确度和数据评分97.31%/Megyr-r_deal_deal_r_r_deal_r_r_r_r_dealgyal_deal_r_r_r_r_r_r_r_r_r_r%r%rgisrgis</s>