We propose to tackle conditional text generation tasks, especially those which require generating formulaic text, by splicing together segments of text from retrieved "neighbor" source-target pairs. Unlike recent work that conditions on retrieved neighbors in an encoder-decoder setting but generates text token-by-token, left-to-right, we learn a policy that directly manipulates segments of neighbor text (i.e., by inserting or replacing them) to form an output. Standard techniques for training such a policy require an oracle derivation for each generation, and we prove that finding the shortest such derivation can be reduced to parsing under a particular weighted context-free grammar. We find that policies learned in this way allow for interpretable table-to-text or headline generation that is competitive with neighbor-based token-level policies on automatic metrics, though on all but one dataset neighbor-based policies underperform a strong neighborless baseline. In all cases, however, generating by splicing is faster.


翻译:我们建议处理有条件的文本生成任务,特别是那些要求生成公式文本的任务,方法是将检索到的“邻居”源目标对的文本部分相混合。与最近的工作不同,即以编码器-编码器设置对检索到的邻居的条件,但产生逐字逐句、左对右的文本生成,我们学习了一种直接操纵邻居文本部分(即通过插入或替换)形成输出的政策。培训这种政策的标准技术要求为每一代人产生一个符咒,而且我们证明找到最短的文本可以减少到在特定加权的无上下文语法下进行分割。我们发现,通过这种方式学习的政策可以使可解释的表格到文字或标题的一代人与以邻居为基础的代号政策具有竞争力,在自动计量方面,尽管除了一个数据集之外,以邻居为基础的政策都处于一个强大的无邻基线之下。然而,在所有情况中,通过拼写方式生成的生成速度更快。

0
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年3月19日
Question Generation by Transformers
Arxiv
5+阅读 · 2019年9月14日
Arxiv
5+阅读 · 2019年4月21日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【文本生成现代方法】Modern Methods for Text Generation
专知会员服务
43+阅读 · 2020年9月11日
专知会员服务
17+阅读 · 2020年9月6日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2017年10月27日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员