We propose RIFE, a Real-time Intermediate Flow Estimation algorithm for Video Frame Interpolation (VFI). Many recent flow-based VFI methods first estimate the bi-directional optical flows, then scale and reverse them to approximate intermediate flows, leading to artifacts on motion boundaries. RIFE uses a neural network named IFNet that can directly estimate the intermediate flows from coarse-to-fine with much better speed. We design a privileged distillation scheme for training intermediate flow model, which leads to a large performance improvement. Experiments demonstrate that RIFE is flexible and can achieve state-of-the-art performance on several public benchmarks. The code is available at \url{https://github.com/hzwer/arXiv2020-RIFE}
翻译:我们建议使用实时中流估算算法(RIFE),用于视频框架内插。许多最近的基于流动的VFI方法首先对双向光学流进行估计,然后将范围扩大并转换为近似中间流,从而在运动边界上产生文物。RIFE使用名为IFNet的神经网络,能够以更快的速度直接估计从粗流到松的中间流。我们为培训中间流模型设计了一个特别的蒸馏计划,从而大大改进性能。实验表明,RIFE具有灵活性,能够在若干公共基准上达到最先进的性能。该代码可在以下网址查阅:\url{https://github.com/hzwer/arXiv20-RIFE}