In this paper we carefully combine Fredman's trick [SICOMP'76] and Matou\v{s}ek's approach for dominance product [IPL'91] to obtain powerful results in fine-grained complexity: - Under the hypothesis that APSP for undirected graphs with edge weights in $\{1, 2, \ldots, n\}$ requires $n^{3-o(1)}$ time (when $\omega=2$), we show a variety of conditional lower bounds, including an $n^{7/3-o(1)}$ lower bound for unweighted directed APSP and an $n^{2.2-o(1)}$ lower bound for computing the Minimum Witness Product between two $n \times n$ Boolean matrices, even if $\omega=2$, improving upon their trivial $n^2$ lower bounds. Our techniques can also be used to reduce the unweighted directed APSP problem to other problems. In particular, we show that (when $\omega = 2$), if unweighted directed APSP requires $n^{2.5-o(1)}$ time, then Minimum Witness Product requires $n^{7/3-o(1)}$ time. - We show that, surprisingly, many central problems in fine-grained complexity are equivalent to their natural counting versions. In particular, we show that Min-Plus Product and Exact Triangle are subcubically equivalent to their counting versions, and 3SUM is subquadratically equivalent to its counting version. - We obtain new algorithms using new variants of the Balog-Szemer\'edi-Gowers theorem from additive combinatorics. For example, we get an $O(n^{3.83})$ time deterministic algorithm for exactly counting the number of shortest paths in an arbitrary weighted graph, improving the textbook $\widetilde{O}(n^{4})$ time algorithm. We also get faster algorithms for 3SUM in preprocessed universes, and deterministic algorithms for 3SUM on monotone sets in $\{1, 2, \ldots, n\}^d$.
翻译:本文将Fredman的技巧和Matou\v{s}ek对支配积的方法合理地结合起来,以在细粒度复杂度方面得出有力的结果:
- 在假设具有$\{1,2,...,n\}$权值的无向图的所有对最短路径(APSP)的时间复杂度为$O(n^{3-o(1)})$(当$\omega=2$时)的前提下,我们展示了各种条件下的下界限制,包括无权有向APSP的$n^{7/3-o(1)}$下界和计算两个$n \times n$布尔矩阵之间的最小见证积的$n^{2.2-o(1)}$下界,即使$\omega=2$,也能改进它们微不足道的$n^2$下界。我们的技术也可以用于将无权有向APSP问题归约到其他问题上。特别是,我们展示了(当$\omega=2$时)如果无权有向APSP需要$n^{2.5-o(1)}$时间,则最小见证积需要$n^{7/3-o(1)}$时间。
- 我们展示了许多细粒度复杂度中的中心问题是其自然计数版本的等效问题。具体来说,我们展示了Min-Plus Product和Exact Triangle是其计数版本的立方子等效问题,并且3SUM是其计数版本的平方子等效问题。
- 我们使用加性组合学中Balog-Szemer��di-Gowers定理的新变体获得了新的算法。例如,我们获得了一种$O(n^{3.83})$时间的确定性算法,用于确切地计算任意加权图中最短路径的数量,改进了教科书上的$\widetilde{O}(n^4)$时间算法。我们还获得了处理过的宇宙中3SUM的更快算法,以及在$\{1,2,...,n\}^d$的单调集合上的确定性3SUM算法。