Consider the following 2-respecting min-cut problem. Given a weighted graph $G$ and its spanning tree $T$, find the minimum cut among the cuts that contain at most two edges in $T$. This problem is an important subroutine in Karger's celebrated randomized near-linear-time min-cut algorithm [STOC'96]. We present a new approach for this problem which can be easily implemented in many settings, leading to the following randomized min-cut algorithms for weighted graphs. * An $O(m\frac{\log^2 n}{\log\log n} + n\log^6 n)$-time sequential algorithm: This improves Karger's $O(m \log^3 n)$ and $O(m\frac{(\log^2 n)\log (n^2/m)}{\log\log n} + n\log^6 n)$ bounds when the input graph is not extremely sparse or dense. Improvements over Karger's bounds were previously known only under a rather strong assumption that the input graph is simple [Henzinger et al. SODA'17; Ghaffari et al. SODA'20]. For unweighted graphs with parallel edges, our bound can be improved to $O(m\frac{\log^{1.5} n}{\log\log n} + n\log^6 n)$. * An algorithm requiring $\tilde O(n)$ cut queries to compute the min-cut of a weighted graph: This answers an open problem by Rubinstein et al. ITCS'18, who obtained a similar bound for simple graphs. * A streaming algorithm that requires $\tilde O(n)$ space and $O(\log n)$ passes to compute the min-cut: The only previous non-trivial exact min-cut algorithm in this setting is the 2-pass $\tilde O(n)$-space algorithm on simple graphs [Rubinstein et al., ITCS'18] (observed by Assadi et al. STOC'19). In contrast to Karger's 2-respecting min-cut algorithm which deploys sophisticated dynamic programming techniques, our approach exploits some cute structural properties so that it only needs to compute the values of $\tilde O(n)$ cuts corresponding to removing $\tilde O(n)$ pairs of tree edges, an operation that can be done quickly in many settings.


翻译:考虑以下 2 尊重 minute 的问题 。 根据一个加权的图形 $G$ 及其横贯树的 $T$, 找到在最多两个边缘包含$T$的削减中最小的削减 。 这个问题是Karger 庆祝的近线- 时间 分钟算法 [STOC'96] 中一个重要的子程 。 我们为这一问题提出了一个新办法, 在许多环境下可以很容易地实施, 导致对加权图形进行以下随机的 分钟算法 。 * 简单( m\ frac2 nlog_ commax ) 。 a rocketal- lical ortical 。 (m\\\ maxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Arxiv
0+阅读 · 2021年4月12日
Arxiv
0+阅读 · 2021年4月11日
Arxiv
0+阅读 · 2021年4月11日
VIP会员
相关VIP内容
专知会员服务
17+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【干货】大数据入门指南:Hadoop、Hive、Spark、 Storm等
专知会员服务
95+阅读 · 2019年12月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
Top
微信扫码咨询专知VIP会员