Consider any sequence of finite groups $A^t$, where $t$ takes values in an integer index set $\mathbf{Z}$. A group system $A$ is a set of sequences with components in $A^t$ that forms a group under componentwise addition in $A^t$, for each $t\in\mathbf{Z}$. In the setting of group systems, a natural definition of a linear system is a homomorphism from a group of inputs to an output group system $A$. We show that any group can be the input group of a linear system and some group system. In general the kernel of the homomorphism is nontrivial. We show that any $\ell$-controllable complete group system $A$ is a linear system whose input group is a generator group $({\mathcal{U}},\circ)$, deduced from $A$, and then the kernel is always trivial. The input set ${\mathcal{U}}$ is a set of tensors, a double Cartesian product space of sets $G_k^t$, with indices $k$, for $0\le k\le\ell$, and time $t$, for $t\in\mathbf{Z}$. $G_k^t$ is a set of generator labels $g_k^t$ where $g_k^t$ is the label of a generator with nontrivial span for the time interval $[t,t+k]$. We show the generator group contains an elementary system, an infinite collection of elementary groups, one for each $k$ and $t$, defined on small subsets of ${\mathcal{U}}$, in the shape of triangles, which form a tile like structure over ${\mathcal{U}}$. Any elementary system is sufficient to define a unique generator group up to isomorphism. Therefore an elementary system is sufficient to construct a linear system and group system as well. Any linear block code is a strongly controllable group system which is nontrivial on a finite time interval. Therefore it is a linear system whose input is a generator group, and we use the generator group to obtain new results on the structure of block codes.
翻译:考虑任何定额组的序列 $A 美元, 其中Ut$在整数指数中取值 $\ mathb\\\$。 组合系统 $A$是一组含有元A$元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元