Consider any sequence of finite groups $A^t$, where $t$ takes values in an integer index set $\mathbf{Z}$. A group system $A$ is a set of sequences with components in $A^t$ that forms a group under componentwise addition in $A^t$, for each $t\in\mathbf{Z}$. In the setting of group systems, a natural definition of a linear system is a homomorphism from a group of inputs to an output group system $A$. We show that any group can be the input group of a linear system and some group system. In general the kernel of the homomorphism is nontrivial. We show that any $\ell$-controllable complete group system $A$ is a linear system whose input group is a generator group $({\mathcal{U}},\circ)$, deduced from $A$, and then the kernel is always trivial. The input set ${\mathcal{U}}$ is a set of tensors, a double Cartesian product space of sets $G_k^t$, with indices $k$, for $0\le k\le\ell$, and time $t$, for $t\in\mathbf{Z}$. $G_k^t$ is a set of generator labels $g_k^t$ where $g_k^t$ is the label of a generator with nontrivial span for the time interval $[t,t+k]$. We show the generator group contains an elementary system, an infinite collection of elementary groups, one for each $k$ and $t$, defined on small subsets of ${\mathcal{U}}$, in the shape of triangles, which form a tile like structure over ${\mathcal{U}}$. Any elementary system is sufficient to define a unique generator group up to isomorphism. Therefore an elementary system is sufficient to construct a linear system and group system as well. Any linear block code is a strongly controllable group system which is nontrivial on a finite time interval. Therefore it is a linear system whose input is a generator group, and we use the generator group to obtain new results on the structure of block codes.


翻译:考虑任何定额组的序列 $A 美元, 其中Ut$在整数指数中取值 $\ mathb\\\$。 组合系统 $A$是一组含有元A$元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元元

0
下载
关闭预览

相关内容

Group一直是研究计算机支持的合作工作、人机交互、计算机支持的协作学习和社会技术研究的主要场所。该会议将社会科学、计算机科学、工程、设计、价值观以及其他与小组工作相关的多个不同主题的工作结合起来,并进行了广泛的概念化。官网链接:https://group.acm.org/conferences/group20/
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月4日
Arxiv
0+阅读 · 2021年6月2日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
【经典书】线性代数元素,197页pdf
专知会员服务
55+阅读 · 2021年3月4日
迁移学习简明教程,11页ppt
专知会员服务
107+阅读 · 2020年8月4日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
TensorFlow 2.0 学习资源汇总
专知会员服务
66+阅读 · 2019年10月9日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
39+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
【TED】生命中的每一年的智慧
英语演讲视频每日一推
9+阅读 · 2019年1月29日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
vae 相关论文 表示学习 2
CreateAMind
6+阅读 · 2018年9月9日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员