As influencers play considerable roles in social media marketing, companies increase the budget for influencer marketing. Hiring effective influencers is crucial in social influencer marketing, but it is challenging to find the right influencers among hundreds of millions of social media users. In this paper, we propose InfluencerRank that ranks influencers by their effectiveness based on their posting behaviors and social relations over time. To represent the posting behaviors and social relations, the graph convolutional neural networks are applied to model influencers with heterogeneous networks during different historical periods. By learning the network structure with the embedded node features, InfluencerRank can derive informative representations for influencers at each period. An attentive recurrent neural network finally distinguishes highly effective influencers from other influencers by capturing the knowledge of the dynamics of influencer representations over time. Extensive experiments have been conducted on an Instagram dataset that consists of 18,397 influencers with their 2,952,075 posts published within 12 months. The experimental results demonstrate that InfluencerRank outperforms existing baseline methods. An in-depth analysis further reveals that all of our proposed features and model components are beneficial to discover effective influencers.


翻译:随着影响者在社交媒体营销中扮演重要角色,公司增加了影响者营销的预算。在社交媒体用户中寻找合适的影响者是社交媒体营销中至关重要的,但是在数以亿计的社交媒体用户中找到合适的影响者是具有挑战性的。在本文中,我们提出 InfluencerRank,通过评估他们的发布行为和社交关系来排列影响者的效力。为了表示发布行为和社交关系,我们采用图卷积神经网络在不同历史时期模拟具有异构网络的影响者。通过学习嵌入的节点特征和网络结构,InfluencerRank 可以推导每个时期的影响者的信息表示。使用注意力机制的循环神经网络最终通过捕捉影响者表示的动态知识,将高效影响者与其他影响者区分开来。我们在 Instagram 数据集上进行了广泛的实验,其中包括了 18,397 位影响者在 12 个月内发布的 2,952,075 条帖子。实验结果表明,InfluencerRank 的表现优于现有的基线方法。进一步的深入分析揭示出我们提出的特征和模型组件对于发现有效的影响者具有重要意义。

0
下载
关闭预览

相关内容

循环神经网络(RNN)是一类人工神经网络,其中节点之间的连接沿时间序列形成有向图。 这使其表现出时间动态行为。 RNN源自前馈神经网络,可以使用其内部状态(内存)来处理可变长度的输入序列。这使得它们适用于诸如未分段的,连接的手写识别或语音识别之类的任务。
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
20+阅读 · 2019年11月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
VIP会员
相关VIP内容
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
Multi-Task Learning的几篇综述文章
深度学习自然语言处理
15+阅读 · 2020年6月15日
【NeurIPS2019】图变换网络:Graph Transformer Network
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
LibRec 精选:推荐的可解释性[综述]
LibRec智能推荐
10+阅读 · 2018年5月4日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关论文
Arxiv
30+阅读 · 2021年7月7日
Arxiv
19+阅读 · 2021年2月4日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
35+阅读 · 2020年1月2日
Arxiv
20+阅读 · 2019年11月23日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Arxiv
17+阅读 · 2019年3月28日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员