The increasing application of cardiorespiratory simulations for diagnosis and surgical planning necessitates the development of computational methods significantly faster than the current technology. To achieve this objective, we leverage the time-periodic nature of these flows by discretizing equations in the frequency domain instead of the time domain. This approach markedly reduces the size of the discrete problem and, consequently, the simulation cost. With this motivation, we introduce a finite element method for simulating time-periodic flows that are physically stable. The proposed time-spectral method is formulated by augmenting the baseline Galerkin's method with a least-squares penalty term. This penalty term is weighted by a positive-definite stabilization tensor, computed by solving an eigenvalue problem that involves the contraction of the velocity convolution matrix with the element metric tensor. The outcome is a formally stable residual-based method that emulates the standard time method when simulating steady flows. Consequently, it preserves the appealing properties of the standard method, including stability in strong convection and the convenient use of equal-order interpolation functions for velocity and pressure, among other benefits. This method is tested on a patient-specific Fontan model at nominal Reynolds and Womersley numbers of 500 and 10, respectively, demonstrating its ability to replicate conventional time simulation results using as few as 7 modes at 11% of the computational cost. Owing to its higher local-to-processor computation density, the proposed method also exhibits improved parallel scalability, thereby enabling efficient utilization of computational resources for the rapid simulation of time-critical applications.


翻译:暂无翻译

0
下载
关闭预览

相关内容

【ACL2020】多模态信息抽取,365页ppt
专知会员服务
151+阅读 · 2020年7月6日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年1月7日
VIP会员
相关资讯
RL解决'BipedalWalkerHardcore-v2' (SOTA)
CreateAMind
31+阅读 · 2019年7月17日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员