Recently, Fasano, Rebaudo, Durante and Petrone (2019) provided closed-form expressions for the filtering, predictive and smoothing distributions of multivariate dynamic probit models, leveraging on unified skew-normal distribution properties. This allows to develop algorithms to draw independent and identically distributed samples from such distributions, as well as sequential Monte Carlo procedures for the filtering and predictive distributions, allowing to overcome computational bottlenecks that may arise for large sample sizes. In this paper, we briefly review the above-mentioned closed-form expressions, mainly focusing on the smoothing distribution of the univariate dynamic probit. We develop a variational Bayes approach, extending the partially factorized mean-field variational approximation introduced by Fasano, Durante and Zanella (2019) for the static binary probit model to the dynamic setting. Results are shown for a financial application.


翻译:最近,Fasano、Rebaudo、Durante和Petrone (2019年) 提供了多种变式动态活性活性原体模型过滤、预测和平稳分布的闭式表达式(2019年), 借助于统一的Skew-正常分布特性, 从而开发了从这些分布中独立和相同分布的样本的算法, 以及随后的Monte Carlo过滤和预测分布程序, 从而可以克服大样本规模的计算瓶颈。 本文简要回顾了上述封闭式表达式, 重点是单体动态活性原体的平稳分布。 我们开发了一种变式贝斯方法, 将Fasano、 Durante和Zanella( 2019年) 引入的静态二元原原原原原原形模型的半成因位变化近似值扩展到动态环境。 我们为财务应用展示了结果 。

0
下载
关闭预览

相关内容

专知会员服务
44+阅读 · 2020年12月18日
专知会员服务
51+阅读 · 2020年12月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
专知会员服务
162+阅读 · 2020年1月16日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月8日
Formalizing Distribution Inference Risks
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月4日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2015年5月16日
VIP会员
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年6月8日
Formalizing Distribution Inference Risks
Arxiv
0+阅读 · 2021年6月7日
Arxiv
0+阅读 · 2021年6月4日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
7+阅读 · 2018年3月21日
Arxiv
3+阅读 · 2015年5月16日
Top
微信扫码咨询专知VIP会员