Dysgraphia, a handwriting learning disability, has a serious negative impact on children's academic results, daily life and overall wellbeing. Early detection of dysgraphia allows for an early start of a targeted intervention. Several studies have investigated dysgraphia detection by machine learning algorithms using a digital tablet. However, these studies deployed classical machine learning algorithms with manual feature extraction and selection as well as binary classification: either dysgraphia or no dysgraphia. In this work, we investigated fine grading of handwriting capabilities by predicting SEMS score (between 0 and 12) with deep learning. Our approach provide accuracy more than 99% and root mean square error lower than one, with automatic instead of manual feature extraction and selection. Furthermore, we used smart pen called SensoGrip, a pen equipped with sensors to capture handwriting dynamics, instead of a tablet, enabling writing evaluation in more realistic scenarios.
翻译:Dysgraphia是一种笔迹学习障碍,对儿童的学业成绩、日常生活和总体福祉有着严重的负面影响。早期发现读写能力可以及早开始有针对性的干预。一些研究已经调查了使用数字平板板电脑的机器学习算法对读写能力的检测。然而,这些研究采用了古典机器学习算法,包括手动特征提取和选择以及二进制分类:要么是读写能力,要么是没有读写能力。在这项工作中,我们通过预测SEMS分数(0到12)和深层次学习,调查了笔迹能力的细微分。我们的方法提供了99%以上的准确度,根中正方差比1级低,而自动而不是人工特征提取和选择。此外,我们使用了智能笔SensoGrip,这是一个配有感应器的笔,可以捕捉笔迹动态,而不是平板,从而能够在更现实的情景下进行写作评价。