The problem of domain adaptation on an unlabeled target dataset using knowledge from multiple labelled source datasets is becoming increasingly important. A key challenge is to design an approach that overcomes the covariate and target shift both among the sources, and between the source and target domains. In this paper, we address this problem from a new perspective: instead of looking for a latent representation invariant between source and target domains, we exploit the diversity of source distributions by tuning their weights to the target task at hand. Our method, named Weighted Joint Distribution Optimal Transport (WJDOT), aims at finding simultaneously an Optimal Transport-based alignment between the source and target distributions and a re-weighting of the sources distributions. We discuss the theoretical aspects of the method and propose a conceptually simple algorithm. Numerical experiments indicate that the proposed method achieves state-of-the-art performance on simulated and real-life datasets.
翻译:使用来自多个标签源数据集的知识对未标目标数据集进行域性调整的问题正在变得越来越重要。关键的挑战是如何设计一种方法,克服源与源之间以及源与目标领域之间的共变和目标转移。在本文件中,我们从一个新的角度来解决这个问题:我们不是寻找源与目标领域之间的潜在代号,而是通过调整其重量与当前目标任务之间的比重来利用源分布的多样性。我们的方法叫做“加权联合分配最佳运输 ” (WJDOT ), 旨在同时找到源与目标分布之间的最佳运输匹配以及源分布的重新加权。我们讨论了方法的理论方面,并提出了一个概念上简单的算法。数字实验表明,拟议的方法在模拟和实际数据集上达到了最新水平的性能。