Splines are one of the main methods of mathematically representing complicated shapes, which have become the primary technique in the fields of Computer Graphics (CG) and Computer-Aided Geometric Design (CAGD) for modeling complex surfaces. Among all, B\'ezier and Catmull-Rom splines are the most common in the sub-fields of engineering. In this paper, we focus on conversion between cubic B\'ezier and Catmull-Rom curve segments, rather than going through their properties. By deriving the conversion equations, we aim at converting the original set of the control points of either of the Catmull-Rom or B\'ezier cubic curves to a new set of control points, which corresponds to approximately the same shape as the original curve, when considered as the set of the control points of the other curve. Due to providing simple linear transformations of control points, the method is very simple, efficient, and easy to implement, which is further validated in this paper using some numerical and visual examples.
翻译:Spline 是数学代表复杂形状的主要方法之一, 它们已成为计算机图形和计算机辅助几何设计( CAGD) 模型复杂表面领域的主要技术。 包括 B\' ezier 和 Catmull- ROm 样条是工程子领域最常见的。 在本文中, 我们侧重于 B\' ezier 和 Catmull- Rom 曲线段之间的转换, 而不是通过它们的特性。 通过生成转换方程式, 我们的目标是将 Catmull- Rom 或 B\'ezier 立方曲线的原始控制点转换为一套新的控制点, 与原始曲线的形状大致相同, 当被视作其他曲线的控制点组时。 由于提供了简单的控制点线性转换, 方法非常简单、 有效且容易执行, 本文使用一些数字和视觉示例进一步验证了该方法 。