Visualization recommendation or automatic visualization generation can significantly lower the barriers for general users to rapidly create effective data visualizations, especially for those users without a background in data visualizations. However, existing rule-based approaches require tedious manual specifications of visualization rules by visualization experts. Other machine learning-based approaches often work like black-box and are difficult to understand why a specific visualization is recommended, limiting the wider adoption of these approaches. This paper fills the gap by presenting KG4Vis, a knowledge graph (KG)-based approach for visualization recommendation. It does not require manual specifications of visualization rules and can also guarantee good explainability. Specifically, we propose a framework for building knowledge graphs, consisting of three types of entities (i.e., data features, data columns and visualization design choices) and the relations between them, to model the mapping rules between data and effective visualizations. A TransE-based embedding technique is employed to learn the embeddings of both entities and relations of the knowledge graph from existing dataset-visualization pairs. Such embeddings intrinsically model the desirable visualization rules. Then, given a new dataset, effective visualizations can be inferred from the knowledge graph with semantically meaningful rules. We conducted extensive evaluations to assess the proposed approach, including quantitative comparisons, case studies and expert interviews. The results demonstrate the effectiveness of our approach.


翻译:可视化建议或自动可视化生成可视化可以大大降低一般用户迅速创建有效数据可视化的障碍,特别是那些在数据可视化方面没有背景的用户。然而,现有的基于规则的方法需要视觉化专家对可视化规则进行烦琐的手工规格。其他基于机器的学习方法往往像黑箱一样工作,难以理解为什么建议具体可视化,限制了这些方法的更广泛采用。本文件通过展示KG4Vis填补了差距,KG4Vis是一种基于可视化建议的知识图(KG)方法。它不需要可视化规则的手工规格,也可以保证良好的解释性。具体地说,我们提出了一个构建知识图的框架,由三类实体(即数据特征、数据列和可视化设计选择)组成,以及它们之间的关系,以模拟数据与有效视觉化规则之间的模型。我们从现有的数据集组合中学习了两个实体的嵌嵌入和知识图式关系,可以将理想的可视化规则嵌入为适当的可视化模型。随后,我们用新的可视性分析的访谈结果,我们用新的可分析性评估性评估了我们的拟议的图表,可以用来推断性分析性评估。我们从新的分析性分析结果,从新的可视性评估到定量评估,从新的可视化的方法。我们用新的可视性评估,从新的分析性分析性的方法可以推断性评估。

1
下载
关闭预览

相关内容

【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
CSKG: The CommonSense Knowledge Graph
Arxiv
18+阅读 · 2020年12月21日
Arxiv
8+阅读 · 2018年3月17日
VIP会员
相关VIP内容
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
相关资讯
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
ACL2020 | 基于Knowledge Embedding的多跳知识图谱问答
AI科技评论
18+阅读 · 2020年6月29日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Github项目推荐 | 知识图谱文献集合
AI研习社
26+阅读 · 2019年4月12日
【荟萃】知识图谱论文与笔记
专知
71+阅读 · 2019年3月25日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
LibRec 精选:连通知识图谱与推荐系统
LibRec智能推荐
3+阅读 · 2018年8月9日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员