In this paper, we present ManyTypes4Py, a large Python dataset for machine learning (ML)-based type inference. The dataset contains a total of 5,382 Python projects with more than 869K type annotations. Duplicate source code files were removed to eliminate the negative effect of the duplication bias. To facilitate training and evaluation of ML models, the dataset was split into training, validation and test sets by files. To extract type information from abstract syntax trees (ASTs), a lightweight static analyzer pipeline is developed and accompanied with the dataset. Using this pipeline, the collected Python projects were analyzed and the results of the AST analysis were stored in JSON-formatted files. The ManyTypes4Py dataset is shared on zenodo and its tools are publicly available on GitHub.


翻译:在本文中,我们展示了MyTypes4Py, 这是用于机器学习(ML)型型的推断的大型 Python 数据集。 数据集包含总共5 382 Python 项目, 超过 869K 型注解 。 复制源代码文档被移除以消除重复偏差的负面影响 。 为了方便培训和评估 ML 模型, 该数据集被分为由文件组成的培训、 验证和测试数据集 。 为了从抽象语法树中提取类型信息, 正在开发一个轻量静态分析器管道, 并伴随数据集。 使用此管道, 所收集的 Python 项目进行了分析, 并且将 AST 分析结果存储在 Json 格式化的文档中 。 许多Types4Py数据集共享于zenodo 上, 其工具在 GitHub 上公开提供 。

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
在Python中使用SpaCy进行文本分类
专知
24+阅读 · 2018年5月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
110+阅读 · 2020年2月5日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关VIP内容
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
吴恩达新书《Machine Learning Yearning》完整中文版
专知会员服务
146+阅读 · 2019年10月27日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
机器学习相关资源(框架、库、软件)大列表
专知会员服务
40+阅读 · 2019年10月9日
【电子书推荐】Data Science with Python and Dask
专知会员服务
44+阅读 · 2019年6月1日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
在Python中使用SpaCy进行文本分类
专知
24+阅读 · 2018年5月8日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
110+阅读 · 2020年2月5日
Mobile big data analysis with machine learning
Arxiv
6+阅读 · 2018年8月2日
Arxiv
7+阅读 · 2018年6月1日
Arxiv
3+阅读 · 2018年3月2日
Arxiv
15+阅读 · 2018年2月4日
Top
微信扫码咨询专知VIP会员