We present NavACL, a method of automatic curriculum learning tailored to the navigation task. NavACL is simple to train and efficiently selects relevant tasks using geometric features. In our experiments, deep reinforcement learning agents trained using NavACL significantly outperform state-of-the-art agents trained with uniform sampling -- the current standard. Furthermore, our agents can navigate through unknown cluttered indoor environments to semantically-specified targets using only RGB images. Obstacle-avoiding policies and frozen feature networks support transfer to unseen real-world environments, without any modification or retraining requirements. We evaluate our policies in simulation, and in the real world on a ground robot and a quadrotor drone. Videos of real-world results are available in the supplementary material.
翻译:我们介绍了导航卫星系统(NavACL),这是根据导航任务量身定制的一种自动课程学习方法。导航卫星系统(NavACL)使用几何特征来培训和有效选择相关任务很简单。在我们的实验中,利用导航卫星系统(NavACL)培训的深强化学习代理器大大优于经过统一取样培训的先进代理器(目前的标准)。此外,我们的代理器可以通过未知的封闭式室内环境导航到仅使用RGB图像定定的静音目标。不协调的回避政策和冻结的特征网络支持向看不见的真实世界环境转移,而没有任何修改或再培训要求。我们在模拟中评估我们的政策,在地面机器人和地铁无人驾驶飞机的实际世界也评估了我们的政策。在补充材料中可以找到真实世界结果的视频。