We establish a rigorous asymptotic theory for the joint estimation of roughness and scale parameters in two-dimensional Gaussian random fields with power-law generalized covariances \cite{Matheron1973, Stein1999, Yaglom1987}. Our main results are bivariate central limit theorems for a class of method-of-moments estimators under increasing-domain and fixed-domain asymptotics. The fixed-domain result follows immediately from the increasing-domain result from the self-similarity of Gaussian random fields with power-law generalized covariances \cite{IstasLang1997, Coeurjolly2001, ZhuStein2002}. These results provide a unified distributional framework across these two classical regimes \cite{AvramLeonenkoSakhno2010-ESAIM, BiermeBonamiLeon2011-EJP} that makes the unusual behavior of the estimates under fixed-domain asymptotics intuitively obvious. Our increasing-domain asymptotic results use spatial averages of quadratic forms of (iterated) bilinear product difference filters that yield explicit expressions for the estimates of roughness and scale to which existing theorems on such averages \cite{BreuerMajor1983,Hannan1970} can be readily applied. We further show that the asymptotics remain valid under modestly irregular sampling due to jitter or missing observations. For the fixed-domain setting, the results extend to models that behave sufficiently like the power-law model at high frequencies such as the often used Mat\'ern model \cite{ZhuStein2006, WangLoh2011EJS, KaufmanShaby2017EJS}.
翻译:本文针对具有幂律广义协方差函数(\\cite{Matheron1973, Stein1999, Yaglom1987})的二维高斯随机场,建立了粗糙度与尺度参数联合估计的严格渐近理论。主要结果为增长域与固定域渐近框架下一类矩估计量的二元中心极限定理。固定域结果可直接由增长域结果推导得出,这得益于具有幂律广义协方差的高斯随机场的自相似性(\\cite{IstasLang1997, Coeurjolly2001, ZhuStein2002})。这些结果为两种经典渐近体系(\\cite{AvramLeonenkoSakhno2010-ESAIM, BiermeBonamiLeon2011-EJP})提供了统一的分布框架,使得固定域渐近下估计量的特殊行为在直观上变得显而易见。我们的增长域渐近结果利用了(迭代)双线性乘积差分滤波器的二次型空间平均,该方法可显式表达粗糙度与尺度参数的估计量,使得现有关于此类平均的定理(\\cite{BreuerMajor1983,Hannan1970})能够直接应用。我们进一步证明,在因抖动或缺失观测导致的适度不规则采样下,渐近性质依然成立。对于固定域情形,该结果可推广至在高频段与幂律模型行为充分接近的模型,例如常用的Mat\\'ern模型(\\cite{ZhuStein2006, WangLoh2011EJS, KaufmanShaby2017EJS})。