We describe semiparametric estimation and inference for causal effects using observational data from a single social network. Our asymptotic results are the first to allow for dependence of each observation on a growing number of other units as sample size increases. In addition, while previous methods have implicitly permitted only one of two possible sources of dependence among social network observations, we allow for both dependence due to transmission of information across network ties and for dependence due to latent similarities among nodes sharing ties. We propose new causal effects that are specifically of interest in social network settings, such as interventions on network ties and network structure. We use our methods to reanalyze an influential and controversial study that estimated causal peer effects of obesity using social network data from the Framingham Heart Study; after accounting for network structure we find no evidence for causal peer effects.
翻译:我们用单一社会网络的观测数据来描述对因果关系的半参数估计和推断。我们的无症状结果首先允许随着抽样规模的增加,对越来越多的其他单位进行每项观察。此外,虽然以前的方法暗含地只允许社会网络观察中两个可能的依赖来源之一,但我们允许由于跨网络联系传递信息而产生的依赖性,以及由于节点共享关系之间潜在的相似性而产生的依赖性。我们提出了社会网络环境中特别感兴趣的新的因果关系,例如网络联系和网络结构方面的干预。我们使用方法重新分析一项有影响力和有争议的研究,该研究利用Framingham心脏研究的社会网络数据估计肥胖的同侪因果关系;在计算网络结构之后,我们没有发现任何关于同侪因果关系的证据。