Discriminative correlation filters (DCF) and siamese networks have achieved promising performance on visual tracking tasks thanks to their superior computational efficiency and reliable similarity metric learning, respectively. However, how to effectively take advantages of powerful deep networks, while maintaining the real-time response of DCF, remains a challenging problem. Embedding the cross-correlation operator as a separate layer into siamese networks is a popular choice to enhance the tracking accuracy. Being a key component of such a network, the correlation layer is updated online together with other parts of the network. Yet, when facing serious disturbance, fused trackers may still drift away from the target completely due to accumulated errors. To address these issues, we propose a coarse-to-fine tracking framework, which roughly infers the target state via an online-updating DCF module first and subsequently, finely locates the target through an offline-training asymmetric siamese network (ASN). Benefitting from the guidance of DCF and the learned channel weights obtained through exploiting the given ground-truth template, ASN refines feature representation and implements precise target localization. Systematic experiments on five popular tracking datasets demonstrate that the proposed DCF-ASN achieves the state-of-the-art performance while exhibiting good tracking efficiency.


翻译:然而,如何有效地利用强大的深层网络的优势,同时保持DCF的实时反应,这仍然是一个具有挑战性的问题。将交叉关系操作员作为一个单独的层嵌入Siamese网络,是提高跟踪准确性的一个流行选择。作为这种网络的一个关键组成部分,该相关层与网络的其他部分一起在网上更新。然而,在面临严重干扰的情况下,引信跟踪器仍可能完全因累积错误而偏离目标。为解决这些问题,我们提议了一个粗略到纤维跟踪框架,通过在线更新DCFM模块来大致推断目标状态,首先和随后通过在线更新DCFF模块,精细定位目标,通过离线培训不对称结构网络(ASN)来提高跟踪准确性。从DCF的指导和通过利用特定地面跟踪模板获得的学习频道重量中受益。ASNEM-SYS-SDS-SLS-SDS-SDS-SSSS-SDSDS-SDS-SD-Simpalinginginging the Statal Proporting the Statal Statal Statal Statal Proportings Proporting the Statal Statal Statal Statal Statroportings proporting Statal Statal Statal Statal Statal pral pral pral Statal pral ex pral ex ex ex ex ex ex exproportings 演示,而获益。

0
下载
关闭预览

相关内容

【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
最新《可解释人工智能》概述,50页ppt
专知会员服务
140+阅读 · 2021年3月17日
已删除
雪球
6+阅读 · 2018年8月19日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Arxiv
8+阅读 · 2018年3月20日
Arxiv
6+阅读 · 2018年2月8日
VIP会员
相关VIP内容
【CVPR 2021】变换器跟踪TransT: Transformer Tracking
专知会员服务
22+阅读 · 2021年4月20日
最新《可解释人工智能》概述,50页ppt
专知会员服务
140+阅读 · 2021年3月17日
Top
微信扫码咨询专知VIP会员