In 5G non-standalone mode, traffic steering is a critical technique to take full advantage of 5G new radio while optimizing dual connectivity of 5G and LTE networks in multiple radio access technology (RAT). An intelligent traffic steering mechanism can play an important role to maintain seamless user experience by choosing appropriate RAT (5G or LTE) dynamically for a specific user traffic flow with certain QoS requirements. In this paper, we propose a novel traffic steering mechanism based on Deep Q-learning that can automate traffic steering decisions in a dynamic environment having multiple RATs, and maintain diverse QoS requirements for different traffic classes. The proposed method is compared with two baseline algorithms: a heuristic-based algorithm and Q-learningbased traffic steering. Compared to the Q-learning and heuristic baselines, our results show that the proposed algorithm achieves better performance in terms of 6% and 10% higher average system throughput, and 23% and 33% lower network delay, respectively.
翻译:在5G非独立模式下,交通指导是充分利用5G新无线电的关键技术,同时在多个无线电接入技术(RAT)中优化5G和LTE网络的双重连接,同时优化5G和LTE网络的双重连接。智能交通指导机制可以发挥重要作用,通过动态选择适当的RAT(5G或LTE)来保持用户无缝经验,并满足某些QOS要求。在本文中,我们提议基于深Q-学习的新交通指导机制,在具有多个RAT的动态环境中使交通指导决定自动化,并维持不同交通级别不同的QOS要求。拟议方法与两种基线算法比较:基于超量算法和基于Q-学习的交通指导。与Q-学习和超量基线比较,我们的结果显示,拟议的算法分别在6%和10%以上的平均系统吞吐量方面实现更好的绩效,以及23%和33%的网络延迟率。