Discovering what is learned by neural networks remains a challenge. In self-supervised learning, classification is the most common task used to evaluate how good a representation is. However, relying only on such downstream task can limit our understanding of what information is retained in the representation of a given input. In this work, we showcase the use of a Representation Conditional Diffusion Model (RCDM) to visualize in data space the representations learned by self-supervised models. The use of RCDM is motivated by its ability to generate high-quality samples -- on par with state-of-the-art generative models -- while ensuring that the representations of those samples are faithful i.e. close to the one used for conditioning. By using RCDM to analyze self-supervised models, we are able to clearly show visually that i) SSL (backbone) representation are not invariant to the data augmentations they were trained with -- thus debunking an often restated but mistaken belief; ii) SSL post-projector embeddings appear indeed invariant to these data augmentation, along with many other data symmetries; iii) SSL representations appear more robust to small adversarial perturbation of their inputs than representations trained in a supervised manner; and iv) that SSL-trained representations exhibit an inherent structure that can be explored thanks to RCDM visualization and enables image manipulation.


翻译:在自我监督的学习中,分类是最常用的任务,用来评估代表性有多好。然而,仅仅依靠这种下游任务就限制了我们对特定投入中保留的信息的理解。在这项工作中,我们展示了使用代表条件扩散模型(RCDM)在数据空间中可视化自我监督模型所学到的表达方式。使用刚果民盟的动机是它能够生成高质量的样本 -- -- 与最先进的基因化模型相同 -- -- 同时确保这些样本的表达方式忠实于用于调节的样本。然而,仅仅依靠这种下游任务可能限制我们对特定投入中保留的信息的理解。在这项工作中,我们展示了使用代表条件扩散模型(RCDM)来在数据空间中可视化自我监督模型(RMSM)的表达方式。 因此,SLM(背骨)的表达方式不易变异,因此往往被反复确认,但错误的信仰;SLF后投影集的嵌入确实无法与这些数据的缩增扩增,同时确保这些样本的表达方式接近,即接近用于调节的样本。 通过使用刚果民盟的自我监督模型,我们能够清楚地显示,SLSL(SL)代表方式看起来更能。

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年10月4日
VIP会员
相关资讯
浅聊对比学习(Contrastive Learning)
极市平台
2+阅读 · 2022年7月26日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员