Recently records on stereo matching benchmarks are constantly broken by end-to-end disparity networks, however the domain adaptation ability of these deep models is quite poor. Addressing such problem, we present a novel domain-adaptive pipeline called AdaStereo that aims to align multi-level representations for deep stereo matching networks. Compared to previous methods for adaptive stereo matching, our AdaStereo realizes a more standard, complete and effective domain adaptation pipeline. Firstly, we propose a non-adversarial progressive color transfer algorithm for input image-level alignment. Secondly, we design an efficient parameter-free cost normalization layer for internal feature-level alignment. Lastly, a highly-related auxiliary task, self-supervised occlusion-aware reconstruction is presented to narrow the gaps in output space. Without whistles and bells, our AdaStereo models achieve state-of-the-art cross-domain performance on multiple stereo matching benchmarks, including KITTI, Middlebury, ETH3D and DrivingStereo, even outperform state-of-the-art disparity networks finetuned with target-domain ground-truths.
翻译:最近关于立体比对基准的记录不断被端到端差异网络打破,然而,这些深层模型的域性适应能力却相当差。 解决这个问题,我们展示了一个名为AdaStereo的新型域性适应性管道,旨在将深立立体比对网络的多级代表结构相匹配。 与先前的适应性立体比对立方法相比,我们的AdaStereo实现了一个更标准、完整和有效的域性适应性管道。 首先,我们提出了投入图像水平匹配的非对抗性渐进色转换算法。 第二,我们为内部地貌水平调整设计了一个高效的无参数成本标准化标准层。 最后,提出了一项高度相关的辅助任务,即自我监督的封闭式对立重建,以缩小产出空间的差距。 没有哨子和铃声,我们的AdaStereo模型在多个立体比对立基准(包括KITTI、Midbury、EET3D和DrivitingStero)上取得了最先进的跨界性表现。 我们设计出一个超级的状态差异网络,甚至与目标界地基平地路。