The video game industry is larger than both the film and music industries combined. Recommender systems for video games have received relatively scant academic attention, despite the uniqueness of the medium and its data. In this paper, we introduce a graph-based recommender system that makes use of interactivity, arguably the most significant feature of video gaming. We show that the use of implicit data that tracks user-game interactions and levels of attainment (e.g. Sony Playstation Trophies, Microsoft Xbox Achievements) has high predictive value when making recommendations. Furthermore, we argue that the characteristics of the video gaming hobby (low cost, high duration, socially relevant) make clear the necessity of personalized, individual recommendations that can incorporate social networking information. We demonstrate the natural suitability of graph-query based recommendation for this purpose.
翻译:视频游戏产业比电影和音乐产业加起来都大。尽管媒体及其数据的独特性,建议游戏系统在学术上受到的关注相对较少。在本文中,我们引入了一个基于图表的建议系统,利用互动性,可以说是视频游戏最重要的特征。我们表明,使用隐性数据跟踪用户-游戏互动和达标水平(如索尼游戏站Trophies,微软Xbox成就)在提出建议时具有很高的预测价值。此外,我们争辩说,视频游戏爱好的特点(低成本、高时长、具有社会相关性)明确了个人化、个别建议的必要性,其中可以包含社交网络信息。我们证明基于图表的建议自然适合这一目的。