The development of artificial intelligent composition has resulted in the increasing popularity of machine-generated pieces, with frequent copyright disputes consequently emerging. There is an insufficient amount of research on the judgement of artificial and machine-generated works; the creation of a method to identify and distinguish these works is of particular importance. Starting from the essence of the music, the article constructs a music-rule-identifying algorithm through extracting modes, which will identify the stability of the mode of machine-generated music, to judge whether it is artificial intelligent. The evaluation datasets used are provided by the Conference on Sound and Music Technology(CSMT). Experimental results demonstrate the algorithm to have a successful distinguishing ability between datasets with different source distributions. The algorithm will also provide some technological reference to the benign development of the music copyright and artificial intelligent music.


翻译:人工智能成份的发展导致机器产生的作品越来越受欢迎,因此经常出现版权争端。对人工和机器产生的作品的判断研究不够充分;创建一种识别和区分这些作品的方法特别重要。从音乐的本质出发,文章通过提取模式构建了一种音乐规则识别算法,这将确定机器产生的音乐模式的稳定性,以判断它是否为人工智能。使用的评价数据集由声音和音乐技术会议提供。实验结果表明算法成功地区分了不同来源分布的数据集的能力。算法还将为音乐版权和人工智能音乐的良性发展提供一些技术参考。

0
下载
关闭预览

相关内容

专知会员服务
159+阅读 · 2020年1月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
2+阅读 · 2020年11月30日
A Survey on Edge Intelligence
Arxiv
50+阅读 · 2020年3月26日
A Survey on Deep Learning for Named Entity Recognition
Arxiv
26+阅读 · 2020年3月13日
VIP会员
相关资讯
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Nature 一周论文导读 | 2018 年 3 月 29 日
科研圈
12+阅读 · 2018年4月7日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员