In 2006, Geoffrey Hinton proposed the concept of training ''Deep Neural Networks (DNNs)'' and an improved model training method to break the bottleneck of neural network development. More recently, the introduction of AlphaGo in 2016 demonstrated the powerful learning ability of deep learning and its enormous potential. Deep learning has been increasingly used to develop state-of-the-art software engineering (SE) research tools due to its ability to boost performance for various SE tasks. There are many factors, e.g., deep learning model selection, internal structure differences, and model optimization techniques, that may have an impact on the performance of DNNs applied in SE. Few works to date focus on summarizing, classifying, and analyzing the application of deep learning techniques in SE. To fill this gap, we performed a survey to analyse the relevant studies published since 2006. We first provide an example to illustrate how deep learning techniques are used in SE. We then summarize and classify different deep learning techniques used in SE. We analyzed key optimization technologies used in these deep learning models, and finally describe a range of key research topics using DNNs in SE. Based on our findings, we present a set of current challenges remaining to be investigated and outline a proposed research road map highlighting key opportunities for future work.


翻译:2006年,Geoffrey Hinton提出了培训“深神经网络(DNNS)”的概念,并改进了示范培训方法,以打破神经网络发展的瓶颈。最近,2016年推出的AlphaGo展示了深层次学习的强大学习能力及其巨大潜力。深层次学习越来越多地用于开发最新的软件工程研究工具,因为其有能力提高执行各种SE任务的业绩。许多因素,例如深层次学习模式的选择、内部结构差异和模型优化技术,可能对在SE应用的DNS的绩效产生影响。迄今为止,很少有工作侧重于总结、分类和分析在SE应用深层次学习技术的情况。为填补这一差距,我们进行了一项调查,以分析2006年以来发表的相关研究。我们首先举一个例子,说明在SE应用的深层次学习技术是如何应用的。然后,我们总结和分类了在SE使用的不同的深层次学习技术。我们分析了这些深层次学习模型中使用的关键优化技术,最后描述了一系列关键研究专题,利用DNNS在SE应用的DNS系统中,我们为当前研究的研究成果提供了一套关键研究大纲。我们正在研究的路线图。

2
下载
关闭预览

相关内容

【新书】深度学习搜索,Deep Learning for Search,附327页pdf
专知会员服务
209+阅读 · 2020年1月13日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
Arxiv
13+阅读 · 2020年8月3日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月31日
VIP会员
相关VIP内容
相关资讯
人工智能 | CCF推荐期刊专刊约稿信息6条
Call4Papers
5+阅读 · 2019年2月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | PRICAI 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年12月13日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Andrew NG的新书《Machine Learning Yearning》
我爱机器学习
11+阅读 · 2016年12月7日
相关论文
Arxiv
13+阅读 · 2020年8月3日
3D Deep Learning on Medical Images: A Review
Arxiv
12+阅读 · 2020年4月1日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
53+阅读 · 2018年12月11日
Arxiv
5+阅读 · 2018年10月11日
A Survey on Deep Transfer Learning
Arxiv
11+阅读 · 2018年8月6日
Arxiv
11+阅读 · 2018年7月31日
Top
微信扫码咨询专知VIP会员