Since the introduction of deep learning, researchers have proposed content generation systems using deep learning and proved that they are competent to generate convincing content and artistic output, including music. However, one can argue that these deep learning-based systems imitate and reproduce the patterns inherent within what humans have created, instead of generating something new and creative. This paper focuses on music generation, especially rhythm patterns of electronic dance music, and discusses if we can use deep learning to generate novel rhythms, interesting patterns not found in the training dataset. We extend the framework of Generative Adversarial Networks(GAN) and encourage it to diverge from the dataset's inherent distributions by adding additional classifiers to the framework. The paper shows that our proposed GAN can generate rhythm patterns that sound like music rhythms but do not belong to any genres in the training dataset. The source code, generated rhythm patterns, and a supplementary plugin software for a popular Digital Audio Workstation software are available on our website.
翻译:自引进深层学习以来,研究人员提出了利用深层学习产生内容和艺术产出的内容生成系统,并证明他们有能力产生令人信服的内容和艺术产出,包括音乐。然而,人们可以争辩说,这些深厚的基于学习的系统模仿和复制人类所创造的内在模式,而不是创造新的和创造性的东西。本文侧重于音乐生成,特别是电子舞蹈音乐的节奏模式,并讨论我们是否可以利用深层学习产生新的节奏、培训数据集中找不到的有趣的模式。我们扩展了General Aversarial 网络(GAN)的框架,鼓励它通过在框架中增加更多的分类人员来改变数据集的内在分布。该文件表明,我们提议的GAN能够产生像音乐节奏那样的节奏模式,但不属于培训数据集中的任何类型。我们的网站上可以找到源代码、生成的节奏模式以及流行的数字音工作站软件的补充插件软件。