Sequential Monte Carlo samplers represent a compelling approach to posterior inference in Bayesian models, due to being parallelisable and providing an unbiased estimate of the posterior normalising constant. In this work, we significantly accelerate sequential Monte Carlo samplers by adopting the L-BFGS Hessian approximation which represents the state-of-the-art in full-batch optimisation techniques. The L-BFGS Hessian approximation has only linear complexity in the parameter dimension and requires no additional posterior or gradient evaluations. The resulting sequential Monte Carlo algorithm is adaptive, parallelisable and well-suited to high-dimensional and multi-modal settings, which we demonstrate in numerical experiments on challenging posterior distributions.
翻译:连续的蒙特卡洛采样器代表了一种令人信服的方法,用于贝叶西亚模型的后推推推法,因为它是平行的,并且提供了对后推法正常化常数的公正估计。在这项工作中,我们通过采用L-BFGS Hessian近似法,大大加快了连续的蒙特卡洛采样器的步伐。L-BFGS Hessian近似法代表了全尺寸优化技术的最先进技术。L-BFGS Hesian近似法在参数方面仅具有线性复杂性,不需要额外的后推法或梯度评估。由此得出的连续的蒙特卡洛算法具有适应性、平行性和适合高维度和多模式环境,我们在挑战外推物分布的数字实验中证明了这一点。