Dynamic routing occurs when customers are not known in advance, e.g. for real-time routing. Two heuristics are proposed that solve the balanced dynamic multiple travelling salesmen problem (BD-mTSP). These heuristics represent operational (tactical) tools for dynamic (online, real-time) routing. Several types and scopes of dynamics are proposed. Particular attention is given to sequential dynamics. The balanced dynamic closest vehicle heuristic (BD-CVH) and the balanced dynamic assignment vehicle heuristic (BD-AVH) are applied to this type of dynamics. The algorithms are applied to a wide range of test instances. Taxi services and palette transfers in warehouses demonstrate how to use the BD-mTSP algorithms in real-world scenarios. Continuous approximation models for the BD-mTSP's are derived and serve as strategic tools for dynamic routing. The models express route lengths using vehicles, customers, and dynamic scopes without the need of running an algorithm. A machine learning approach was used to obtain regression models. The mean absolute percentage error of two of these models is below 3%.


翻译:当客户事先不为人知时,就会出现动态路由,例如,实时路由。建议使用两种超常路由,解决平衡的动态多个流动销售人员问题(BD-mTSP)。这些路由是动态(在线、实时)路由的操作(战术)工具。提出了几种动态类型和范围。特别注意顺序动态。平衡的动态最接近的车辆超常(BD-CVH)和平衡的动态分配车辆超常(BD-AVH)应用到这种动态。这些算法应用到广泛的测试实例中。出租车服务和仓库的调色板传输展示了如何在现实世界情景中使用BD-mTSP算法。BD-MTSP的连续近似模型是衍生出来的,并作为动态路由的战略工具。模型表示使用车辆、客户和动态范围而不需要使用算法的路线长度。机器学习方法用于获取回归模型。两种模型的绝对百分比错误低于3 %。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
【CVPR2021】背景鲁棒的自监督视频表征学习
专知会员服务
16+阅读 · 2021年3月13日
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Arxiv
0+阅读 · 2021年8月21日
Financial Time Series Representation Learning
Arxiv
10+阅读 · 2020年3月27日
Arxiv
5+阅读 · 2018年10月4日
A Multi-Objective Deep Reinforcement Learning Framework
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
【跟踪Tracking】15篇论文+代码 | 中秋快乐~
专知
18+阅读 · 2018年9月24日
【ECCV2018】24篇论文代码实现
专知
17+阅读 · 2018年9月10日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
Top
微信扫码咨询专知VIP会员