Classification of time series signals has become an important construct and has many practical applications. With existing classifiers we may be able to accurately classify signals, however that accuracy may decline if using a reduced number of attributes. Transforming the data then undertaking reduction in dimensionality may improve the quality of the data analysis, decrease time required for classification and simplify models. We propose an approach, which chooses suitable wavelets to transform the data, then combines the output from these transforms to construct a dataset to then apply ensemble classifiers to. We demonstrate this on different data sets, across different classifiers and use differing evaluation methods. Our experimental results demonstrate the effectiveness of the proposed technique, compared to the approaches that use either raw signal data or a single wavelet transform.
翻译:时间序列信号的分类已经成为一个重要构件,并有许多实际应用。 有了现有的分类器,我们也许可以准确对信号进行分类,然而,如果使用数量减少的属性,准确性可能会下降。 转换数据,然后降低维度,可以提高数据分析的质量,缩短分类和简化模型所需的时间。 我们提出一种方法,选择合适的波子来转换数据,然后将这些变换的输出结合起来,构建数据集,然后应用共同的分类器。 我们在不同的数据集上展示这一点,在不同分类器之间,使用不同的评价方法。 我们的实验结果表明,与使用原始信号数据或单一波子变换的方法相比,拟议技术的有效性。