In this paper, we present a lightweight and effective change detection model, called TinyCD. This model has been designed to be faster and smaller than current state-of-the-art change detection models due to industrial needs. Despite being from 13 to 140 times smaller than the compared change detection models, and exposing at least a third of the computational complexity, our model outperforms the current state-of-the-art models by at least $1\%$ on both F1 score and IoU on the LEVIR-CD dataset, and more than $8\%$ on the WHU-CD dataset. To reach these results, TinyCD uses a Siamese U-Net architecture exploiting low-level features in a globally temporal and locally spatial way. In addition, it adopts a new strategy to mix features in the space-time domain both to merge the embeddings obtained from the Siamese backbones, and, coupled with an MLP block, it forms a novel space-semantic attention mechanism, the Mix and Attention Mask Block (MAMB). Source code, models and results are available here: https://github.com/AndreaCodegoni/Tiny_model_4_CD
翻译:在本文中,我们展示了一种轻量和有效变化探测模型,称为“TinyCD”。这个模型的设计速度和小于目前最新的变化探测模型。由于工业需要,TyyyCD使用一个Siames U-Net结构,在全球时间和地方空间上利用低水平特征,尽管比变化探测模型小13至140倍,至少暴露了三分之一的计算复杂度,但我们的模型在LEVIR-CD数据集的F1分和IoU上至少用1美元比方1美元和IoU的当前最先进的模型,在LEVIR-CD数据集上和IOU上都比目前最先进的模型高出1美元,在WHU-CD数据集上则超过8美元。为了达到这些结果,TyyyyyCD使用了一个Siames U-Net结构,在全球时间和地方空间上利用了低水平特征。此外,我们采取了一项新的战略,将空间时空域的特征混合起来,将Siames骨架上的嵌合起来,并与MLP区块一起形成了一个新的空间-mantiaty关注机制,即Mix和注意面罩(MAMB).)。这里有源代码、模型和结果。这里有: http_gy_mode_Mode_Ander4。