We introduce a general theory of epistemic random fuzzy sets for reasoning with fuzzy or crisp evidence. This framework generalizes both the Dempster-Shafer theory of belief functions, and possibility theory. Independent epistemic random fuzzy sets are combined by the generalized product-intersection rule, which extends both Dempster's rule for combining belief functions, and the product conjunctive combination of possibility distributions. We introduce Gaussian random fuzzy numbers and their multi-dimensional extensions, Gaussian random fuzzy vectors, as practical models for quantifying uncertainty about scalar or vector quantities. Closed-form expressions for the combination, projection and vacuous extension of Gaussian random fuzzy numbers and vectors are derived.
翻译:我们引入了以模糊或模糊证据进行推理的隐性随机模糊集束的一般理论。 这个框架概括了Dempster-Shafer信仰功能理论和可能性理论。 独立的隐性随机模糊集束由通用产品隔开规则结合, 后者扩展了Dempster将信仰功能合并的规则, 以及可能分布的合用产品。 我们引入了高斯随机模糊数及其多维扩展, 高斯随机模糊矢量, 作为量化星际或矢量不确定性的实用模型。 生成了高斯随机模糊数和矢量的组合、 投影和真空扩展的封闭式表达方式 。