In this paper, we address an alternative formulation for the exact inverse formula of the Radon transform on circle arcs arising in a modality of Compton Scattering Tomography in translational geometry proposed by Webber and Miller (Inverse Problems (36)2, 025007, 2020). The original study proposes a first method of reconstruction, using the theory of Volterra integral equations. The numerical realization of such a type of inverse formula may exhibit some difficulties, mainly due to stability issues. Here, we provide a suitable formulation for exact inversion that can be straightforwardly implemented in the Fourier domain. Simulations are carried out to illustrate the efficiency of the proposed reconstruction algorithm.
翻译:在本文中,我们讨论了韦伯和米勒(Inverse problems (362,025007,2020年))提议的翻译几何学Compton散射成像学模式中产生的圆弧半径变形正反公式的替代提法,最初的研究提出了使用Volterra整体方程理论的第一个重建方法,这种反向公式的数值实现可能存在一些困难,主要由于稳定性问题。在这里,我们为精确反向提供了适当的提法,可以在Fourier领域直接实施。进行了模拟,以说明拟议重建算法的效率。