In neuromorphic computing, artificial synapses provide a multi-weight conductance state that is set based on inputs from neurons, analogous to the brain. Additional properties of the synapse beyond multiple weights can be needed, and can depend on the application, requiring the need for generating different synapse behaviors from the same materials. Here, we measure artificial synapses based on magnetic materials that use a magnetic tunnel junction and a magnetic domain wall. By fabricating lithographic notches in a domain wall track underneath a single magnetic tunnel junction, we achieve 4-5 stable resistance states that can be repeatably controlled electrically using spin orbit torque. We analyze the effect of geometry on the synapse behavior, showing that a trapezoidal device has asymmetric weight updates with high controllability, while a straight device has higher stochasticity, but with stable resistance levels. The device data is input into neuromorphic computing simulators to show the usefulness of application-specific synaptic functions. Implementing an artificial neural network applied on streamed Fashion-MNIST data, we show that the trapezoidal magnetic synapse can be used as a metaplastic function for efficient online learning. Implementing a convolutional neural network for CIFAR-100 image recognition, we show that the straight magnetic synapse achieves near-ideal inference accuracy, due to the stability of its resistance levels. This work shows multi-weight magnetic synapses are a feasible technology for neuromorphic computing and provides design guidelines for emerging artificial synapse technologies.
翻译:在神经畸形计算中,人工突触提供了一种基于神经输入的、与大脑相似的神经输入的多重量导线状态。 超过多重重量的突触的额外特性可能需要, 并取决于应用程序, 需要从同一材料中产生不同的突触行为。 在这里, 我们测量基于磁隧道交叉点和磁域壁的磁材料的人工突触。 通过在单一磁隧道连接点下的一个域际墙轨迹中构造利透图识别器, 我们实现了4-5个稳定抗力状态, 可以通过旋转轨道对神经神经进行反复控制。 我们分析几何测量对突触行为的影响, 表明陷阱分裂装置具有高度可控性的不同突触性行为行为。 而直线装置具有较高的偏移性, 但具有稳定的抗力水平。 设备数据是输入神经形态计算模拟模拟器, 以显示具体应用的同步功能的实用性功能。 在流式神经系统- MINISI 数据中, 我们分析几何测度对神经结构的精确性影响作用, 我们展示了一个用来在轨变形变电图中进行系统设计的系统测试的系统, 。