Relative abundance is a common metric to estimate the composition of species in ecological surveys reflecting patterns of commonness and rarity of biological assemblages. Measurements of coral reef compositions formed by four communities along Australia's Great Barrier Reef (GBR) gathered between 2012 and 2017 are the focus of this paper. We undertake the task of finding clusters of transect locations with similar community composition and investigate changes in clustering dynamics over time. During these years, an unprecedented sequence of extreme weather events (cyclones and coral bleaching) impacted the 58 surveyed locations. The dependence between constituent parts of a composition presents a challenge for existing multivariate clustering approaches. In this paper, we introduce a finite mixture of Dirichlet distributions with group-specific parameters, where cluster memberships are dictated by unobserved latent variables. The inference is carried in a Bayesian framework, where MCMC strategies are outlined to sample from the posterior model. Simulation studies are presented to illustrate the performance of the model in a controlled setting. The application of the model to the 2012 coral reef data reveals that clusters were spatially distributed in similar ways across reefs which indicates a potential influence of wave exposure at the origin of coral reef community composition. The number of clusters estimated by the model decreased from four in 2012 to two from 2014 until 2017. Posterior probabilities of transect allocations to the same cluster substantially increase through time showing a potential homogenization of community composition across the whole GBR. The Bayesian model highlights the diversity of coral reef community composition within a coral reef and rapid changes across large spatial scales that may contribute to undermining the future of the GBR's biodiversity.


翻译:相对丰度是评估生态调查中物种构成的常见指标,反映了生物群落的共同性和罕见性模式。2012年至2017年期间收集的澳大利亚大堡礁(GBR)上四个社区形成的珊瑚礁构成的测量是本文的重点。我们的任务是寻找具有相似社区构成的交叉地点群集,并调查一段时间内群集动态的变化。这些年来,极端气候事件(环流和珊瑚漂白)史无前例的系列对58个被调查地点产生影响。一个组成结构的各组成部分对现有的多变群集方法构成了挑战。在本文件中,我们引入了由四个社区组成的、与特定群体参数的有限混合体构成。根据未观测到的潜在潜在变量决定了群集的构成。我们的任务是寻找具有相似社区群集群集群集群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群群群群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集群集,其中,这些群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群群

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2021年6月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文笔记 | Modeling MOOC Student Behavior
科技创新与创业
5+阅读 · 2017年12月25日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月29日
Arxiv
0+阅读 · 2021年6月27日
Arxiv
0+阅读 · 2021年6月25日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关VIP内容
专知会员服务
52+阅读 · 2021年6月14日
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
【干货书】贝叶斯推断随机过程,449页pdf
专知会员服务
150+阅读 · 2020年8月27日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
论文笔记 | Modeling MOOC Student Behavior
科技创新与创业
5+阅读 · 2017年12月25日
Top
微信扫码咨询专知VIP会员