Point cloud analysis is challenging due to irregularity and unordered data structure. To capture the 3D geometries, prior works mainly rely on exploring sophisticated local geometric extractors using convolution, graph, or attention mechanisms. These methods, however, incur unfavorable latency during inference, and the performance saturates over the past few years. In this paper, we present a novel perspective on this task. We notice that detailed local geometrical information probably is not the key to point cloud analysis -- we introduce a pure residual MLP network, called PointMLP, which integrates no sophisticated local geometrical extractors but still performs very competitively. Equipped with a proposed lightweight geometric affine module, PointMLP delivers the new state-of-the-art on multiple datasets. On the real-world ScanObjectNN dataset, our method even surpasses the prior best method by 3.3% accuracy. We emphasize that PointMLP achieves this strong performance without any sophisticated operations, hence leading to a superior inference speed. Compared to most recent CurveNet, PointMLP trains 2x faster, tests 7x faster, and is more accurate on ModelNet40 benchmark. We hope our PointMLP may help the community towards a better understanding of point cloud analysis. The code is available at https://github.com/ma-xu/pointMLP-pytorch.
翻译:云层分析之所以具有挑战性,是因为数据结构不规则且没有顺序。为了捕捉 3D 的地理比例,先前的工作主要依靠利用 convolution、图形或注意力机制探索精密的本地几何提取器。 但是,这些方法在推算和过去几年的性能饱和中都存在不可取的延迟。 在本文中,我们给出了有关这项任务的新观点。我们注意到,详细的本地几何信息可能不是点云分析的关键 -- -- 我们引入了一个纯残余的 MLP 网络,称为PointMLP,该网络没有精密的本地几何提取器,但仍具有很强的竞争力。 安装了一个拟议的轻度几何测地模型, 图形, 图形, 图形, 图形, 图形, PintMLP 在多个数据集中提供新的状态。 在真实世界 ScancObjectNNN 数据库中, 我们的方法甚至比以前的最佳方法准确度高出3. 3. 3 % 。 我们强调, pointMLP 在任何复杂的操作中都能够更快速的帮助速度。