The spatial search problem aims to find a marked vertex of a finite graph using a dynamic with two constraints: (1) The walker has no compass and (2) the walker can check whether a vertex is marked only after reaching it. This problem is a generalization of unsorted database search and has many applications to algorithms. Classical algorithms that solve the spatial search problem are based on random walks and the computational complexity is determined by the hitting time. On the other hand, quantum algorithms are based on quantum walks and the computational complexity is determined not only by the number of steps to reach a marked vertex, but also by the success probability, since we need to perform a measurement at the end of the algorithm to determine the walker's position. In this work, we address the spatial search problem on Johnson graphs using the coined quantum walk model. Since Johnson graphs are vertex- and distance-transitive, we have found an invariant subspace of the Hilbert space, which aids in the calculation of the computational complexity. We have shown that, for every fixed diameter, the asymptotic success probability is $1/2$ after taking $\pi\sqrt N/(2\sqrt 2)$ steps, where $N$ is the number of vertices of the Johnson graph.


翻译:空间搜索问题的目的是利用具有以下两个限制的动态来找到一个限定图形的标记顶点:(1) 行人没有指南,(2) 行人可以检查一个顶点是否在到达后才标记。这是一个未分类数据库搜索的概括化问题,对算法有许多应用。解决空间搜索问题的经典算法以随机行走为基础,而计算复杂性则由点击时间决定。另一方面,量子算法以量子行走为基础,计算复杂性不仅取决于达到一个标志顶点的步骤数量,而且取决于成功概率,因为我们需要在算法的结尾进行测量以确定行人的位置。在这项工作中,我们用硬体量行走模型解决约翰逊图的空间搜索问题。由于约翰逊图是垂直和远距离移动的,我们发现了一个可变的希尔伯特空间子空间,它有助于计算复杂性的计算。我们显示,对于每一个固定直径,美元的正值N2的正值正值/正数是美元正值的正值概率。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
最新《高级算法》Advanced Algorithms,176页pdf
专知会员服务
90+阅读 · 2020年10月22日
【经典书】C语言傻瓜式入门(第二版),411页pdf
专知会员服务
51+阅读 · 2020年8月16日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2022年2月9日
VIP会员
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员