This letter describes an approach to achieve well-known Chinese cooking art stir-fry on a bimanual robot system. Stir-fry requires a sequence of highly dynamic coordinated movements, which is usually difficult to learn for a chef, let alone transfer to robots. In this letter, we define a canonical stir-fry movement, and then propose a decoupled framework for learning this deformable object manipulation from human demonstration. First, the dual arms of the robot are decoupled into different roles (a leader and follower) and learned with classical and neural network-based methods separately, then the bimanual task is transformed into a coordination problem. To obtain general bimanual coordination, we secondly propose a Graph and Transformer based model -- Structured-Transformer, to capture the spatio-temporal relationship between dual-arm movements. Finally, by adding visual feedback of content deformation, our framework can adjust the movements automatically to achieve the desired stir-fry effect. We verify the framework by a simulator and deploy it on a real bimanual Panda robot system. The experimental results validate our framework can realize the bimanual robot stir-fry motion and have the potential to extend to other deformable objects with bimanual coordination.
翻译:这封信描述了在双体机器人系统中实现众所周知的中国烹饪艺术搅拌法的方法。 Stir-fry 需要一系列高度动态协调的动作,通常很难为厨师学习,更不用说向机器人转移了。 在这封信中,我们定义了一个卡通搅拌法运动,然后提出一个分解框架,以便从人类演示中了解这种变形物体的操纵。首先,机器人的双臂被分解成不同的角色(领导者、追随者),用传统和神经网络方法分别学习,然后将双体任务转化成一个协调问题。要获得一般的双体协调,我们第二建议一个基于图形和变形模型的模型 -- -- 结构-变形模型,以捕捉双臂运动之间的双体-时空关系。最后,通过添加内容变形的视觉反馈,我们的框架可以自动调整运动,以达到预期的搅拌效果。我们通过模拟器来核查框架,并将框架部署在真正的双体Panda机器人系统上。实验结果证实我们的框架可以实现双体的双体运动。